Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Raport Badawczy = Research Report ; RB/53/2006
Instytut Badań Systemowych. Polska Akademia Nauk ; Systems Research Institute. Polish Academy of Sciences
11 stron ; 21 cm ; Bibliografia s. 10-11
The paper investigates the gradient sampling algorithm of Burke, Lewis and Overton for minimizing a locally Lipschitz function f on Rn that is continuously differentiable on an open dense subset. The existing convergence results for this algorithm were reinforced. A slightly revised version has been introduced for which stronger results are established without requiring compactness of the level sets of f. In particular, it has been shown that with probability 1 the revised algorithm either drives the f -values to -∞, or each of its cluster points is Clarke stationary for f. A simplified variant was also considered in which the differentiability check is skipped and the user can control the number of f-evaluations per iteration.
Raport Badawczy = Research Report
Licencja Creative Commons Uznanie autorstwa 4.0
Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -
Instytut Badań Systemowych Polskiej Akademii Nauk
Biblioteka Instytutu Badań Systemowych PAN
Oct 19, 2021
Sep 17, 2020
72
https://rcin.org.pl./publication/175173
Edition name | Date |
---|---|
RB-2006-53 : Kiwiel Krzysztof Czesław : Convergence of the Gradient Sampling Algorithm for Nonsmooth Nonconvex Optimization | Oct 19, 2021 |
Kiwiel, Krzysztof
Kiwiel, Krzysztof
Kiwiel, Krzysztof
Kiwiel, Krzysztof Larsson, Torbjörn Lindberg, Per
Kiwiel, Krzysztof Larsson, Torbjörn Lindberg, Per
Kiwiel, Krzysztof Larsson, Torbjörn Lindberg, Per
Pawłow, Irena Zajączkowski, Wojciech
Kiwiel, Krzysztof