Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 94 z. 4 (2022)
Talus slopes origin is connected both with weathering and transport of the rock grain. The formation of these landforms is an effect of many climatological, morphological and geological factors. The grain size of the surface of the talus slope brings some information about the way of transport and deposition mechanisms. The main aim of the paper is to present different talus slope formation in two mountain locations - in arctic periglacial and semi-arid continental periglacial climate zones. Results from two study sites are presented. The first one was located on Spitsbergen Island, on its SW coast, near Polish Polar Station. The climate is arctic and periglacial, the average annual temperature is -3,2°C, annual precipitation is 494,6 mm. The slope is exposed to the west, rock face and talus slope are built with gneiss, crystalline shales with marbles intrusions. There is permafrost as well as an active layer noted on this study site. The second study site is in the Fann Mountains, part of Pamiro-Alay massive in Tajikistan. The annual temperature is about 1-2°C (meteo stations nearby: 6,6°C Iskanderkul 2204 m.a.s.l., 0,7°C Shahristan Pass 3143 m.a.s.l.), annual precipitation is about 300 mm. Slope is exposed to the south, rock material is a Devonian massive limestone. No permafrost was observed in this area. On both study sites, similar methods were used. Profiles with four measuring points were designated. On these points, 0,5 x 0,5 m square were marked and perpendicular photographs from a 1,5 m distance were made. Grain sizes were analyzed in BaseGRAIN software. In Asian periglacial high-mountain conditions lack of permafrost and low precipitation causes, that there is no factor of water. Domination of gravitational processes is sorting material when the heaviest rock fragments are transported longer and are deposited on lower positions on the slope.
Akerman, J. (2005). Relations between slow slope processes and active-layer thickness 1972‑2002, Kapp Linné, Svalbard. Norsk Geografisk Tidsskrift, Norwegian Journal of Geography, 59, 116‑128. https://doi.org/10.1080/00291950510038386
Ballantyne, C.K. (2018). Periglacial Geomorphology. Hoboken, NJ, USA: John Wiley & Sons.
Birkenmajer, K., Jania, J., & Pulina, M. (1991). Hornsund, Spitsbergen, Geologia, 1: 75000 (mapa z objaśnieniem). Katowice: Uniwersytet Śląski.
Caine, N. (1974). The geomorphic processes of the alpine environment. W: J.D. Ives, R.G. Barry (red.), Arctic and Alpine Environments. London: Methuen, 721‑748.
Detert, M., & Weitbrecht, V. (2012). Automatic object detection to analyze the geometry of gravel grains: A free stand-alone tool. W: Muñoz, R.E.M. (red.), River Flow (s. 595‑600). Leiden: CRC Press/Balkema.
Dolnicki, P. (2010). Zmiany termiki gruntu w Hornsundzie (SW Spitsbergen) w latach 1990‑2009. Problemy Klimatologii Polarnej, 20, 121‑127.
Dolnicki, P. (2020). Charakterystyka warstwy czynnej wieloletniej zmarzliny na Spitsbergenie, Svalbard (na przykładzie równiny nadmorskiej Fuglebergsletta, Hornsund). Kraków: Wydawnictwo Uniwersytetu Pedagogicznego. https://doi.org/10.24917/9788380845763
Dolnicki, P., & Grabiec, M. (2022). The Thickness of Talus Deposits in the Periglacial Area on SW Spitsbergen (Fugleberget Mountainside) in the Light of Slope Development Theories. Land, 11(2). https://doi.org/10.3390/land11020209
French, H.M. (2007). The Periglacial Environment. Harlow, Addison Wesley: Longman, https://doi.org/10.1017/S0016756897488258
Halles, T.C., & Roering, J.J. (2005). Climat-controlled variations in scree production, Southern Alps, New Zeland. Geology, 33, 701‑704. https://doi.org/10.1130/G21528.1
Harris, C., Arenson, L.U., Christiansen, H.H., Etzel- Müller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Holzle, M., Humlum, O., Isaken, K., Kääb, A., Kern-Lustschg, MA., Lehning, M., Matsuoka, N., Murton, J.B., Notzli, J., Phillips, M., Ross, N., Seppala, M., Springman, S.M., & Vonder Mühll, D. (2009). Permafrost and climate in Europe: Monitoring and modeling thermal geomorphological and geotechnical responses, Earth Science Reviews, 92, s. 117‑171.
Klimaszewski, M. (1969). Geomorfologia. Warszawa: WSiP.
Kotarba, A., Kaszowski, L., & Krzemień, K. (1987). High Mountain Denudational System of the Polish Tatra Mountains. Kraków: Polska Akademia Nauk.
Kotarba, A., Klapa, M., Midriak, R., Petras, J., & Skroda, J. (1979). Field experiments on high mountain slopes of the Tatra Mts. Studia Geomorphologica Carpatho-Balcanica, 13, 132‑148.
Kroh, P., Dolnicki, P., & Łajczak, A. (2021). Subnival Processes and Subnival Sedimentation Mechanisms, the Pamir-Alay Mts., Tajikistan. Land, 10(2), 104. https://doi.org/10.3390/land10020104
Luckman, B.H. (2013a). Processes, transport, deposition and landforms: rockfall. W: J. Shroder, R.A. Marston, M. Stoffel, (red.), Treatise on Geomorphology, 7, Mountain and Hillslope Geomorphology (s. 174‑182). San Diego: Academic Press.
Luckman, B.H. (2013b). Talus slopes. W: SA Elias (red.), The Encyclopedia of Quaternary Science (s. 566‑573). Amsterdam: Elsevier.
Łupikasza, E. (2003). Zmienność występowania opadów deszczu i śniegu w Hornsundzie w okresie lipiec 1978 - grudzień 2002. Problemy Klimatologii Polarnej, 13, 93‑105.
Manecki, A., Czerny, J., Kieres, A., Manecki, M., & Rajchel, J. (1993). Geological map of the SW part of Wedel Jarlsberg Land, Spitsbergen. Kraków: Wydawnictwo AGH.
Martini, A. (1986). Contemporary periglacial weathering processes of the mountain massifs in the vicinity of Hornsund, SW Spitsbergen. Acta Universitatis Wratislaviensis, 966, 45‑73.
Matsuoka, N. (2001). Solifluction rates, processes and landforms: a global review. Earth Sciences Review, 55(1‑2), 107‑134.
Migoń, P. (2009). Geomorfologia. Warszawa: PWN, 108‑142.
Niedźwiedź, T. (2002). Wpływ cyrkulacji atmosfery na wysokie opady w Hornsundzie (Spitsbergen). Problemy Klimatologii Polarnej, 12, 65‑75.
Niedźwiedź, T. (2003). Współczesna zmienność cyrkulacji atmosfery, temperatury powietrza i opadów atmosferycznych na Spitsbergenie. Problemy Klimatologii Polarnej, 13, 79‑92.
Pisabarro, A., Pellitero, R., Serrano, E., Gómez-Lende, M., & Gonzalez-Trueba, J.J. (2017). Ground temperatures, landforms and processes in an Atlantic mountain. Cantabrian Mountains (Northern Spain). Catena, 149(2), 623‑636.
Plesiński, K., Marek, A., Skalicz, F., & Radecki-Pawlik, A. (2017). Wykorzystanie modelu komputerowego BaseGRAIN do analizy składu granulometrycznego rumowiska wleczonego potoku Ponikiewka metodą fotograficzną. Acta Scientiarum Polonorum Formatico Circumiectus, 16(1).
Rapp, A., & Fairbridge, R.W. (1968). Talus fan or cone. W: R.W. Fairbridge, (red.), Encyclopaedia of Geomorphology (s. 1106‑1109). New York: Van Nostrand Reinhold.
Rahmonov, O., Szczypek, T., Niedźwiedź, T., Myga-Piątek, U., Rahmonov, M., & Snytko, V.A. (2017). The human impact on the transformation of juniper forest landscape in the western part of the Pamir-Alay range (Tajikistan). Environmental Earth Sciences, 76(8), 324. https://doi.org/10.1007/s12665-017-6643-4.
Rączkowska, Z. (2007). Współczesna rzeźba peryglacjalna wysokich gór Europy. Prace Geograficzne, 212. Warszawa: IGiPZ PAN.
Rączkowska, Z. (2008). Zróżnicowanie współczesnej rzeźby peryglacjalnej w górach wysokich Europy. Landform Analysis, 9, 120‑122.
Senderak, K., Kondracka, M., & Gądek, B. (2017). Talus slope evolution under the influence of glaciers with the example of slopes near the Hans Glacier, SW Spitsbergen, Norway. Geomorphology, 285, 225‑234.
Serrano, E., Sanjose, J., Gomez-Gutierrez, A., & Gomez-Lende, M. (2019). Surface movement and cascade processes on debris cones in temperate high mountain (Picos de Europa, northern Spain. Science of the Total Environment, 649, 1323‑1337. https://doi.org/10.1016/j.scitotenv.2018.08.405
Van Steijn, H., de Ruig, J., & Hoozemans, F. (1988). Morphological and mechanical aspects of Debris flows in parts of the French Alps. Zeitschrift Geomorphologie, 32, 143‑161.
Traczyk, A., & Korabiewski, B. (2008). Pełznięcie pokryw gruzowych na stokach Fugleberget w Hornsundzie (SW Spitsbergen). W: A. Kowalska, A. Latocha, H. Marszałek, J. Pereyma (red.), Środowisko przyrodnicze obszarów polarnych (s. 89‑89). Wrocław: Uniwersytet Wrocławski. https://doi.org/10.13140/RG.2.2.15619.60963
Wawrzyniak, T., & Osuch, M.A. (2020). 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard). Earth System Science Data, 12(2), 805‑815. https://doi.org/10.5194/essd-12-805-2020
Zech, R., Röhringer, I., Sosin, P., Kabgov, H., Merchel, S., Akhmadaliev, S., & Zech, W. (2013). Late Pleistocene glaciations in the Gissar Range, Tajikistan, Based on 10Be surface exposure dating. Palaeogeography, palaeoclimatology, palaeoecology, 369, 253‑261. https://doi.org/10.1016/j.palaeo.2012.10.031
oai:rcin.org.pl:237292 ; doi:10.7163/PrzG.2022.4.2 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2022.4.2
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Oct 13, 2023
Jan 3, 2023
228
https://rcin.org.pl./publication/273254
Sawicki, Ludwik (1893–1972)