• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Zmiany w strukturze odpływu wody ze zlewni karpackich w półroczu hydrologicznym zimowym w latach 1981‑2020 = Changes in water-runoff patterns in Carpathian catchments during the winter hydrological half-years of the 1981-2020 period

Subtitle:

Przegląd Geograficzny T. 94 z. 4 (2022)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

The main objective of the study was to spatially and temporally determine the structure of channel outflow and the directions of its changes in selected river catchments in the Western Carpathians during the winter hydrological semester, under conditions of climate change and increasing anthropopressure. The study included four drainage basins, representing features of the Beskids Mountain (Soła and Osława catchemnts) and Foothills Mountain (Skawinka and Stobnica catchments). The study cover period 1981-2020. The average outflow of the winter half-year (HWHY) ranged from 150.3 mm (Skawinka) to 348.8 mm (Oslawa), while the share of HWHY in the annual outflow (HA) averaged from 50.9% (Soła) to 60.4% (Stobnica). From 1981 to 2020, HWHY did not show statistically significant directions of change. Negative HWHY trends were found in all the studied catchments since 2000. In the studied catchments, there was a diversity of dominant sources of watercourse supply in HWHY. There was a recession of snowmelt-induced runoff ranging from 0.3 mm yr-1 (Skawinka) to 1.2 mm yr-1 (Soła) and an increase in the role of ground supply of 0.17 mm yr-1 (Skawinka) to 1.04 mm year-1 (Osława). The  runoff coefficient for WHY had lower average values in the foothill catchments: Stobnica (64%) and Skawinka (67%).

References:

Bai, L., Shi, C., Shi, Q., Li, L., Wu, J., Yang, Y.,... & Meng, J. (2019). Change in the spatiotemporal pattern of snowfall during the cold season under climate change in a snow‐dominated region of China. International Journal of Climatology, 39(15), 5702‑5719. https://doi.org/10.1002/joc.6182 DOI
Beljaars, A.C.M., Viterbo, P., Miller, M.J., & Betts, A.K. (1996). The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Monthly Weather Review, 124(3), 362‑383. https://doi.org/10.1175/1520-0493(1996)124<0362:tarotu>2.0.co; 2 DOI
Bochenek, W., & Kijowska-Strugała, M. (2021). Variability of low flow in Polish Carpathians (foothills and Beskidy Mountains) catchments in the period 19882017. Przegląd Geograficzny, 93(1), 5‑25. https://doi.org/10.7163/PrzG.2021.1.1 DOI
Bokwa, A., Wypych, A., & Ustrnul, Z. (2013). Climate changes in the vertical zones of the Polish Carpathians in the last 50 years. W: J. Kozak, K. Ostapowicz, A. Bytnerowicz & B. Wyżga (red.), The Carpathians: Integrating Nature and Society Towards Sustainability. Environmental Science and Engineering (s. 89‑109). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-12725-0_8 DOI
Bucała-Hrabia, A. (2018). Land use changes and their catchment-scale environmenta limpact in the Polish Western Carpathians during transition from centrally planned to free-market economics. Geographia Polonica, 91(2), 171‑196. https://doi.org/10.7163/gpol.0116 DOI
Deng, H., Pepin, N.C., & Chen, Y. (2017). Changes of snowfall under warming in the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122(14), 7323‑7341. https://doi.org/10.1002/2017jd026524 DOI
Dong, W., & Ming, Y. (2022). Seasonality and Variability of Snowfall to Total Precipitation Ratio over High Mountain Asia Simulated by the GFDL High-Resolution AM4. Journal of Climate, 35(17), 5573‑5589. https://doi.org/10.1175/jcli-d-22-0026.1 DOI
Hassan, W.H., & Nile, B.K. (2021). Climate change and predicting future temperature in Iraq using CanESM2 and HadCM3 modeling. Modeling Earth Systems and Environment, 7(2), 737‑748. https://doi.org/10.1007/s40808-020-01034-y DOI
Hodgkins, G.A., Dudley, R.W., & Huntington, T.G. (2003). Changes in the timing of high river flows in New England over the 20th century. Journal of Hydrology, 278(1‑4), 244‑252. https://doi.org/10.1016/S0022-1694(03)00155-0 DOI
Irannezhad, M., Ronkanen, A.K., Kiani, S., Chen, D., & Kløve, B. (2017). Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns. Cold Regions Science and Technology, 143, 23‑31. https://doi.org/10.1016/j.coldregions.2017.08.008 DOI
Jain, S.K., Goswami, A., & Saraf, A.K. (2010). Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff. Water resources management, 24(9), 1763‑1777. https://doi.org/10.1016/j.coldregions.2017.08.008 DOI
Kijowska-Strugała, M., Bucała-Hrabia, A., & Demczuk, P. (2018). Long-term impact of land use changes on soil erosion in an agricultural catchment (in the Western Polish Carpathians). Land Degradation & Development, 29(6), 1871‑1884. https://doi.org/10.1002/ldr.2936 DOI
Krusell, P., & Smith, Jr, A.A. (2022). Climate change around the world. Working Paper Serie, 30338. National Bureau of Economic Research. https://doi.org/10.3386/w30338 DOI
Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H., & Zhang, T. (2007). Observations: Changes in Snow, Ice and Frozen Ground. W: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, & H.L. Miller (red.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (s. 337‑383). Cambridge, United Kingdom and New York: Cambridge University Press.
Lin, W., & Chen, H. (2022). Changes in the spatial-temporal characteristics of daily snowfall events over the Eurasian continent from 1980 to 2019. International Journal of Climatology, 42(3), 1841‑1853. https://doi.org/10.1002/joc.7339 DOI
Nayak, A., Marks, D., Chandler, D.G., & Seyfried, M. (2010). Long-term snow, climate, and streamflow trends at the Reynolds Creek experimental watershed, Owyhee Mountains, Idaho, United States. Water resources research, 46(6). https://doi.org/10.1029/2008WR007525 DOI
Qin, Y., Abatzoglou, J.T., Siebert, S., Huning, L.S., AghaKouchak, A., Mankin, J.S., & Mueller, N.D. (2020). Agricultural risks from changing snowmelt. Nature Climate Change, 10(5), 459‑465. https://doi.org/10.1038/s41558-020-0746-8 DOI
Randall, D.A., Wood, R.A., & et al. (2007). Climate models and their evaluation. W: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, & H.L. Miller (red.), Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (s. 589‑662). United Kingdom and New York, NY, USA: Cambridge University Press.
Shen, Y.J., Shen, Y., Fink, M., Kralisch, S., Chen, Y., & Brenning, A. (2018). Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. Journal of hydrology, 557, 173‑181. https://doi.org/10.1016/j.jhydrol.2017.12.035 DOI
Unrug, R. (red.). (1969). Przewodnik geologiczny po zachodnich Karpatach fliszowych. Warszawa: Wydawnictwa Geologiczne.
Wypych, A., Ustrnul, Z., & Schmatz, D.R. (2018). Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. Journal of Mountain Science, 15(2), 237‑253. https://doi.org/10.1007/s11629-017-4374-3 DOI
Xu, S., Qin, M., Ding, S., Zhao, Q., Liu, H., Li, C.,... & Ji, X. (2019). The impacts of climate variation and land use changes on streamflow in the Yihe River, China. Water, 11(5), 887. https://doi.org/10.3390/w11050887 DOI
Yang, Y., Javanroodi, K., & Nik, V.M. (2022). Climate Change and Renewable Energy Generation in Europe - Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties. Energies, 15(1), 302. https://doi.org/10.3390/en15010302 DOI
Żytko, K., Gucik, S., & Ślączka, A. (1973). Przewodnik po wschodnich Karpatach fliszowych. Warszawa: Wydawnictwo Geologiczne.

Relation:

Przegląd Geograficzny

Volume:

94

Issue:

4

Start page:

503

End page:

519

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

oai:rcin.org.pl:237295 ; doi:10.7163/PrzG.2022.4.5 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2022.4.5

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information