• Wyszukaj w całym Repozytorium
  • Piśmiennictwo i mapy
  • Archeologia
  • Baza Młynów
  • Nauki przyrodnicze

Szukaj w Repozytorium

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Piśmiennictwo i mapy

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Archeologia

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Baza Młynów

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Nauki przyrodnicze

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Projekty RCIN i OZwRCIN

Obiekt

Tytuł: Zmienność zależności Z-R w okresach miesięcznych – dla zwiększenia dokładności szacowania wielkości opadów za pomocą radarów meteorologicznych = Variability of the Z-R relationship in monthly periods – to increase the accuracy of estimating the amount of precipitation using meteorological radars

Twórca:

Barszcz, Mariusz Paweł : Autor Affiliation ORCID

Data wydania/powstania:

2024

Typ zasobu:

Tekst

Inny tytuł:

Przegląd Geograficzny T. 96 z. 4 (2024)

Wydawca:

IGiPZ PAN

Miejsce wydania:

Warszawa

Opis:

24 cm

Abstrakt:

Pomiary z wykorzystaniem radarów meteorologicznych dostarczają dane opadowe o dużej rozdzielczości przestrzennej, które są szczególnie potrzebne do modelowania hydrodynamicznego w obszarach zurbanizowanych. Głównym ograniczeniem w kwestii szacowania opadów przy wykorzystaniu radarów jest duża zmienność zależności Z-R (tj. między wartościami odbiciowości i intensywności opadów) w czasie i przestrzeni. Pomiary z wykorzystaniem disdrometru laserowego (Parsivel1), zlokalizowanego na stacji meteorologicznej Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie, zrealizowane w latach 2012‑2014 oraz 2019‑2020 (w okresach kwiecieńpaździernik), pozwoliły na zgromadzenie danych umożliwiających wyznaczenie zależności ZR typu potęgowego (parametrów a, b) w odniesieniu do poszczególnych miesięcy. Przeprowadzone badania wykazały znaczące różnice między wartościami parametru a (mnożnika w zależności Z-R) dla poszczególnych miesięcy, co wskazuje na potrzebę uwzględnienia w procedurze kalibracji radarów zmiennych zależności Z-R. Ustalono, że istnieje silna korelacja (R = 0,70) między parametrem a zależności Z-R i średnią miesięczną odbiciowością opadów, którego wartości pomierzono za pomocą disdrometru. Wyniki tych badań stanowią przyczynek do zwiększenia dokładności szacowania wielkości opadów przy wykorzystaniu radarów meteorologicznych.

Bibliografia:

Adirosi, E., Roberto, N., Montopoli, M., Gorgucci, E., & Baldini, L. (2018). Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD: Application to Italian Climatology, Atmosphere, 9, 360. https://doi.org/10.3390/atmos9090360 DOI
Atencia, A., Mediero, L., Llasat, M.C., & Garrote, L. (2011). Effect of radar rainfall time resolution on the predictive capability of distributed hydrologic model. Hydrol. Earth Syst. Sci., 15, 3809‑3827. DOI
Atlas, D. & Chmela, A.C. (1957). Physicalsynoptic variations of dropsize parameters. W: Preprints, sixth weather radar conference, 21‑19. Boston, MA: American Meteorological Society.
Baltas, E.A., Panagos, D.S., & Mimikou, M.A. (2015). An approach for the Estimation of Hydrometeorological Variables Towars the Determination of Z-R Coefficients. Environ. Process., 2, 751‑759. https://doi.org/10.1007/s407100150119x DOI
Barszcz, M. (2022). Ocena przydatności disdrometru laserowego i radaru meteorologicznego do szacowania wielkości opadów deszczu. Przegląd Geograficzny, 94(4), 451‑470. https://doi.org/10.7163/PrzG.2022.4.3 DOI
Barszcz, M., Stańczyk, T., & Brandyk, A. (2023). Zależności między wartościami odbiciowości i intensywności opadów z disdrometru laserowego - dla radarowego szacowania wielkości opadów. Przegląd Geograficzny, 95(2), 149‑162. https://doi.org/10.7163/PrzG.2023.2.2 DOI
Bournas, A. & Baltas, E. (2021). Comparative Analysis of Rain Gauge and Radar Precipitation Estimates towards RainfallRunoff Modelling in a PeriUrban Basin in Attica, Greece. Hydrology, 8, 29. https://doi.org/10.3390/hydrology8010029 DOI
Bournas, A. & Baltas, E. (2022). Determination of the ZR Relationship through Spatial Analysis of XBand Weather Radar and Rain Gauge Data. Hydrology, 9, 137. https://doi.org/10.3390/hydrology9080137 DOI
Chumchean, S., Sharma, A., & Seed, A. (2003). Radar rainfall error variance and its impact on radar rainfall calibration. Physics and Chemistry of the Earth, 28 (1‑3), 27‑39. https://doi.org/10.1016/S14747065(03)000056 DOI
Conti, F.L., Francipane, A., Pumo, D., & Noto, L.V. (2015). Exploring single polarization Xband weather radar potentials for local meteorological and hydrological applications. Journal of Hydrology, 531, 508‑522. https://doi.org/10.1016/j.jhydrol.2015.10.071 DOI
Delrieu, G., Bonnifait, L., Kirstetter, P.E., & Boudevillain, B. (2014). Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological Sciences Journal, 59(7), 1308‑1319. DOI
Fulton, R.A., Breidenbach, J.P., Seo, D.J., Miller, D.A., & O' Bannon, T. (1998). The WSR88D rainfall algorithm. Weather Forecast., 13, 37‑395. DOI
Guyot, A., Pudashine, J., Protat, A., Uijlenhoet, R., Pauwels, V.R.N., Seed, A., & Walker, J.P. (2019). Effect of disdrometer type on rain drop size distribution characterization: a new dataset for southeastern Australia. Hydrol. Earth Syst. Sci., 23, 4737‑4761. https://doi.org/10.5194/hess2347372019 DOI
Hunter, S. (1996). WSR88D radar rainfall estimation: capabilities, limitations and potential improvements. National Weather Digest, 20(4), 26‑36.
Jaffrain, J. & Berne. A. (2011). Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. Journal of Hydrometeorology, 12, 352‑370. https://doi.org/10.1175/2010JHM1244.1 DOI
Jiang, Y., Yang, L., Zeng, Y., Tong, Z., Li, J., Liu, F., Zhang, J., & Liu, J. (2022). Comparison of summer raindrop size distribution characteristics in the western and central Tianshan Mountains of China. Meteorological Applications, 29(3), e2067. https://doi.org/10.1002/met.2067 DOI
Krajewski, W.F., Kruger, A., Caracciolo, C., Golé, P., Barthes, L., Creutin, JD., Delahaye, JY., Nikolopoulos, E.I., Ogden, F., & Vinson, JP. (2006). DEVEXDisdrometer Evaluation Experiment: Basic results and implications for hydrologic studies. Advances in Water Resources, 29, 311‑325. https://doi.org/10.1016/j.advwatres.2005.03.018 DOI
Lee, G.W. & Zawadzki, I. (2006). Radar calibration by gauge, disdrometer, and polarimetry: Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J. Hydrol., 328, 83‑97. https://doi.org/10.1016/j.jhydrol.2005.11.046 DOI
Licznar, P. & Krajewski, W.F. (2016). Precipitation Type Specific Radar Reflectivityrain Rate Relationship for Warsaw, Poland. Acta Geophysica, 64(5), 1840‑1857. DOI
Licznar, P. & Siekanowicz-Grochowina, K. (2015). Wykorzystanie disdrometru laserowego do kalibracji obrazów pochodzących z radarów opadowych na przykładzie Warszawy. Ochrona Środowiska, 37(2), 11‑16.
Marshall, J.S. & Palmer, W.McK. (1948). The distribution of raindrops with size. Journal of Meteorology, 5, 165‑166. https://doi.org/10.1175/15200469(1948)005<0165:TDORWS>2.0.CO;2 DOI
Marshall, J.S., Hitschfeld, W., & Gunn, K.L.S. (1955). Advances in radar weather. Advances in Geophysics, 2, 1‑56. https://doi.org/10.1016/S00652687(08)603106 DOI
Moszkowicz, S. & Tuszyńska, I. (2006). Meteorologia radarowa. Podręcznik użytkownika informacjiradarowej IMGW. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Tapiador, F.J., Checa, R., & de Castro, M. (2010). An experiment to measure the spatial variability of Rain Drop size distribution using sixteen laser disdrometers, Geophys. Res. Lett., 37, L16803. https://doi.org/10.1029/2010GL044120 DOI
Tokay, A., Wolff, D.B., & Peterson, W.A. (2014). Evaluation of the new version of the laseroptical disdrometer, OTT Parsivel2. J. Atmos. Ocean. Tech., 31, 1276‑1288. https://doi.org/10.1175/JTECHD1300174.1 DOI
Uijlenhoet, R., Smith, J.A., & Steiner, M. (2003). The microphysical structure of extreme precipitation as inferred from groundbased raindrop spectra. J. Atmos. Sci., 60, 1220‑1238. https://doi.org/10.1175/15200469(2003)60<1220:TMSOEP>2.0.CO;2 DOI
Uijlenhoet, R. & Sempere Torres, D. (2006). Measurement and parameterization of rainfall microstructure. J. Hydrol., 328, 1‑7. https://doi.org/10.1016/j.jhydrol.2005.11.038 DOI
Villarini, G. & Krajewski, W.F. (2010). Review of the different sources of uncertainty in single polarization radarbased estimates of rainfall. Surveys in Geophysics, 31(1), 107‑129. https://doi.org/10.1007/s107120099079x DOI
Wu, Z., Zhang, Y., Zhang, L., Zheng, H., & Huang, X. (2022). A Comparison of Convective and Stratiform Precipitation Microphysics of the Recordbreaking Typhoon InFa (2021). Remote Sens., 14, 344. https://doi.org/10.3390/rs14020344 DOI

Czasopismo/Seria/cykl:

Przegląd Geograficzny

Tom:

96

Zeszyt:

4

Strona pocz.:

447

Strona końc.:

458

Szczegółowy typ zasobu:

Artykuł

Format:

application/octet-stream

Identyfikator zasobu:

oai:rcin.org.pl:243832 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2024.4.2

Źródło:

CBGiOŚ. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; kliknij tutaj, żeby przejść

Język:

pol

Język streszczenia:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa 4.0

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R ; Unia Europejska. Europejski Fundusz Rozwoju Regionalnego

Dostęp:

Otwarty

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji