Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 96 z. 4 (2024)
Meteorological radar measurements provide precipitation data to a high level of spatial resolution, which are particularly needed for hydrodynamic modeling in urbanized areas. The main limitation in the estimation of precipitation using radars is attributed to the high variability of the Z-R relationship (i.e. between values for reflectivity and intensity of precipitation) in time and space. Measurements using a laser disdrometer (Parsivel1) located at the Meteorological Station of Warsaw University of Life Sciences, carried out in the years 2012–2014 and 2019–2020 (in the April-October periods), allowed to collect data enabling the determination of the Z-R relationships of the power type (parameters a and b) in relation to individual months. The work carried out identified significant differences among noted values for the parameter a (the multiplier in the Z-R relationships) for individual months, which justifies a need to take into account in the calibration procedure of radars variable Z-R relationships. It was found that there is a strong correlation (R = 0.70) between the a parameter in the Z-R relationships and the average monthly reflectivity of precipitation, the values of which were measured using the disdrometer. The results of the studies described here contribute to improve the accuracy of estimates of amounts of precipitation derived from radars.
Adirosi, E., Roberto, N., Montopoli, M., Gorgucci, E., & Baldini, L. (2018). Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD: Application to Italian Climatology, Atmosphere, 9, 360. https://doi.org/10.3390/atmos9090360
Atencia, A., Mediero, L., Llasat, M.C., & Garrote, L. (2011). Effect of radar rainfall time resolution on the predictive capability of distributed hydrologic model. Hydrol. Earth Syst. Sci., 15, 3809‑3827.
Atlas, D. & Chmela, A.C. (1957). Physicalsynoptic variations of dropsize parameters. W: Preprints, sixth weather radar conference, 21‑19. Boston, MA: American Meteorological Society.
Baltas, E.A., Panagos, D.S., & Mimikou, M.A. (2015). An approach for the Estimation of Hydrometeorological Variables Towars the Determination of Z-R Coefficients. Environ. Process., 2, 751‑759. https://doi.org/10.1007/s407100150119x
Barszcz, M. (2022). Ocena przydatności disdrometru laserowego i radaru meteorologicznego do szacowania wielkości opadów deszczu. Przegląd Geograficzny, 94(4), 451‑470. https://doi.org/10.7163/PrzG.2022.4.3
Barszcz, M., Stańczyk, T., & Brandyk, A. (2023). Zależności między wartościami odbiciowości i intensywności opadów z disdrometru laserowego - dla radarowego szacowania wielkości opadów. Przegląd Geograficzny, 95(2), 149‑162. https://doi.org/10.7163/PrzG.2023.2.2
Bournas, A. & Baltas, E. (2021). Comparative Analysis of Rain Gauge and Radar Precipitation Estimates towards RainfallRunoff Modelling in a PeriUrban Basin in Attica, Greece. Hydrology, 8, 29. https://doi.org/10.3390/hydrology8010029
Bournas, A. & Baltas, E. (2022). Determination of the ZR Relationship through Spatial Analysis of XBand Weather Radar and Rain Gauge Data. Hydrology, 9, 137. https://doi.org/10.3390/hydrology9080137
Chumchean, S., Sharma, A., & Seed, A. (2003). Radar rainfall error variance and its impact on radar rainfall calibration. Physics and Chemistry of the Earth, 28 (1‑3), 27‑39. https://doi.org/10.1016/S14747065(03)000056
Conti, F.L., Francipane, A., Pumo, D., & Noto, L.V. (2015). Exploring single polarization Xband weather radar potentials for local meteorological and hydrological applications. Journal of Hydrology, 531, 508‑522. https://doi.org/10.1016/j.jhydrol.2015.10.071
Delrieu, G., Bonnifait, L., Kirstetter, P.E., & Boudevillain, B. (2014). Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological Sciences Journal, 59(7), 1308‑1319.
Fulton, R.A., Breidenbach, J.P., Seo, D.J., Miller, D.A., & O' Bannon, T. (1998). The WSR88D rainfall algorithm. Weather Forecast., 13, 37‑395.
Guyot, A., Pudashine, J., Protat, A., Uijlenhoet, R., Pauwels, V.R.N., Seed, A., & Walker, J.P. (2019). Effect of disdrometer type on rain drop size distribution characterization: a new dataset for southeastern Australia. Hydrol. Earth Syst. Sci., 23, 4737‑4761. https://doi.org/10.5194/hess2347372019
Hunter, S. (1996). WSR88D radar rainfall estimation: capabilities, limitations and potential improvements. National Weather Digest, 20(4), 26‑36.
Jaffrain, J. & Berne. A. (2011). Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. Journal of Hydrometeorology, 12, 352‑370. https://doi.org/10.1175/2010JHM1244.1
Jiang, Y., Yang, L., Zeng, Y., Tong, Z., Li, J., Liu, F., Zhang, J., & Liu, J. (2022). Comparison of summer raindrop size distribution characteristics in the western and central Tianshan Mountains of China. Meteorological Applications, 29(3), e2067. https://doi.org/10.1002/met.2067
Krajewski, W.F., Kruger, A., Caracciolo, C., Golé, P., Barthes, L., Creutin, JD., Delahaye, JY., Nikolopoulos, E.I., Ogden, F., & Vinson, JP. (2006). DEVEXDisdrometer Evaluation Experiment: Basic results and implications for hydrologic studies. Advances in Water Resources, 29, 311‑325. https://doi.org/10.1016/j.advwatres.2005.03.018
Lee, G.W. & Zawadzki, I. (2006). Radar calibration by gauge, disdrometer, and polarimetry: Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J. Hydrol., 328, 83‑97. https://doi.org/10.1016/j.jhydrol.2005.11.046
Licznar, P. & Krajewski, W.F. (2016). Precipitation Type Specific Radar Reflectivityrain Rate Relationship for Warsaw, Poland. Acta Geophysica, 64(5), 1840‑1857.
Licznar, P. & Siekanowicz-Grochowina, K. (2015). Wykorzystanie disdrometru laserowego do kalibracji obrazów pochodzących z radarów opadowych na przykładzie Warszawy. Ochrona Środowiska, 37(2), 11‑16.
Marshall, J.S. & Palmer, W.McK. (1948). The distribution of raindrops with size. Journal of Meteorology, 5, 165‑166. https://doi.org/10.1175/15200469(1948)005<0165:TDORWS>2.0.CO;2
Marshall, J.S., Hitschfeld, W., & Gunn, K.L.S. (1955). Advances in radar weather. Advances in Geophysics, 2, 1‑56. https://doi.org/10.1016/S00652687(08)603106
Moszkowicz, S. & Tuszyńska, I. (2006). Meteorologia radarowa. Podręcznik użytkownika informacjiradarowej IMGW. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Tapiador, F.J., Checa, R., & de Castro, M. (2010). An experiment to measure the spatial variability of Rain Drop size distribution using sixteen laser disdrometers, Geophys. Res. Lett., 37, L16803. https://doi.org/10.1029/2010GL044120
Tokay, A., Wolff, D.B., & Peterson, W.A. (2014). Evaluation of the new version of the laseroptical disdrometer, OTT Parsivel2. J. Atmos. Ocean. Tech., 31, 1276‑1288. https://doi.org/10.1175/JTECHD1300174.1
Uijlenhoet, R., Smith, J.A., & Steiner, M. (2003). The microphysical structure of extreme precipitation as inferred from groundbased raindrop spectra. J. Atmos. Sci., 60, 1220‑1238. https://doi.org/10.1175/15200469(2003)60<1220:TMSOEP>2.0.CO;2
Uijlenhoet, R. & Sempere Torres, D. (2006). Measurement and parameterization of rainfall microstructure. J. Hydrol., 328, 1‑7. https://doi.org/10.1016/j.jhydrol.2005.11.038
Villarini, G. & Krajewski, W.F. (2010). Review of the different sources of uncertainty in single polarization radarbased estimates of rainfall. Surveys in Geophysics, 31(1), 107‑129. https://doi.org/10.1007/s107120099079x
Wu, Z., Zhang, Y., Zhang, L., Zheng, H., & Huang, X. (2022). A Comparison of Convective and Stratiform Precipitation Microphysics of the Recordbreaking Typhoon InFa (2021). Remote Sens., 14, 344. https://doi.org/10.3390/rs14020344
oai:rcin.org.pl:243832 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2024.4.2
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Jan 21, 2025
Jan 21, 2025
4
https://rcin.org.pl./publication/280583
Barszcz, Mariusz Paweł
Searle, J. B. Thorpe, R. S.
Bekele, A. Capanna, E. Corti, M. Marcus, L. F. Schlitter, D. A.
Agostini, Nicolantonio Premuda, Guido Mellone, Ugo Panuccio, Michele Logozzo, Daniela Bassi, Enrico Cocchi, Leonardo
Barszcz, Mariusz Paweł Stańczyk, Tomasz Brandyk, Andrzej
Barszcz, Mariusz Paweł Kazanowska, Ewa Wasilewicz, Michał