Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 91 z. 1 (2019)
The aim of this work was to estimate the potential of arable land to provide a regulating service – namely decomposition, following the CICES v5.1 theoretical framework and classification system. Arable land potential was estimated by characteristics of earthworms (Lumbricidae), notably the density and biomass of their populations. Arable lands accounts for about 60% of Poland, and such intensive land-use systems (and especially those involving large-scale monocultures) exert a significant impact on individual components of the environment, for example leading to a degradation of soil structure and an increase in its aeration, to mineralisation of humus, and to the release of carbon dioxide into the atmosphere. In this context, an important aspect is maintenance of resources of organic matter in soil, given that the latter not only plays a significant role in production, as a habitat and in regard to retention, but also mediates processes of carbon sequestration that have the potential to reduce the greenhouse effect. Since Charles Darwin conducted his classic studies of earthworms in the late 1800s, these species have been recognised as major actors in the processing of dead and decomposing organic matter. Earthworms improve soil bulk density, pore size, water infiltration rate, soil water content, and water-holding capacity. High earthworm densities are associated with well-drained, aerated, fertile soils. Characteristics of earthworm assemblages in terms of their biomass and density (also within ecological groups) can thus serve as valuable indicators of Ecosystem Services (ES) offered by agricultural ecosystems, given the key relationships pertaining between earthworms and critical soil processes for ES. The study areas are located in a young glacial landscape in Suwalskie Lake District in NE Poland (OM), as well as the Western Pomeranian Lake District in NW Poland (OP). The farmlands selected (of 90 and 100 ha respectively) are old structured landscapes under constant management for at least 100 years. The main site selection criterion was thus the existence of two spatially different configurations of arable land in each region – i.e. a heterogeneous one of small fields (PM) that belong to private owners; and a homogeneous one comprising large fields (PW) previously state-managed but now subject to a continuous method of cultivation. A total of 440 sampling points were analysed. Earthworms were collected under similar weather conditions in May (spring season) and in October (autumn season) over a two-year period (2007–2008). Pits 30 cm deep of cross-sectional area 0.25 m2 were dug out by hand, with specimens extracted in situ by a combination of sifting and hand-sorting and than fixed immediately in 70% ethanol. All the individuals were identified to species level, counted and weighted. Statistical calculations were made using SAS 9.2 software. To determine the significance of differences in quantitative characteristics of assemblages of earthworms, multifactorial analysis of variance (ANOVA) was conducted, with the significance level set at p = 0.05. The results of the analysis in supra-regional terms show that areas of more diversified spatial structure support a significantly higher density and biomass of earthworms than do structurally-poorer areas. This means that, in this aspect, the potential for providing decomposition services (ES) is higher in the mosaic of small fields than the homogeneous area. On a regional basis, the overall density and biomass of Lumbricidae points to significant differences between OM (“the masurian area”) and OP (“the pomeranian area”). It should be emphasised that differences between miscellaneous systems of agricultural areas are much more visible in the case of the OM area. The small fields of the OM area are much smaller than the corresponding fields in OP area, and are also crossed by numerous balks and mid-field roads.
1. Affek A., 2018, Indicators of ecosystem potential for pollination and honey production, Ecological Indicators, 94, 2, s. 33-45. https://doi.org/10.1016/j.ecolind.2017.04.001
2. Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z., 2005, Badania ekologiczno-gleboznawcze, PWN, Warszawa.
3. Bertrand M., Barot S., Blouin M., Whalen J., de Oliveira T., Roger-Estrade J., 2015, Earthworm services for cropping systems: a review, Agronomy for Sustainable Development, 35, 2, s. 553-567. https://doi.org/10.1007/s13593-014-0269-7
4. Bieńkowski J., Jankowiak J., 2006, Zawartość węgla organicznego w glebie i jego zmiany pod wpływem różnych systemów produkcji, Fragmenta Agronomica, 2, s. 216−225.
5. Blouin M., Hodson M.E., Delgado E.A., Baker G., Brussaard L., Butt K.R., Dai J., Dendoovenh L., Peres G., Tondoh J.E., Cluzeau D., Brun J.J., 2013, A review of earthworm impact on soil function and ecosystem services, European Journal of Soil Science, 64, s. 161-182. https://doi.org/10.1111/ejss.12025
6. Bouché M.B., 1972, Lombriciens de France. Ecologie et Systematique, IN de la Recherche Agronomique, 72, 2.
7. Bouché M.B., 1977, Strategies Lombriciennes, Ecological Bulletins, 25, s. 122-132.
8. Boyer S., Wratten S.D., 2010. The potential of earthworms to restore ecosystem services after opencast mining - a review, Basic and Applied Ecology, 11, s. 196-203. https://doi.org/10.1016/j.baae.2009.12.005
9. Brusaard L., 1997, Biodiversity and ecosystem functioning in soil, Ambio, 26, s. 563-570.
10. Edwards C.A., Bohlen P.J., 1996, Biology of Earthworms, Chapman and Hall, London, UK.
11. Eggleton P., Inward K., Smith J., Jones D.T., Sherlock E., 2009, A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture, Soil Biology nad Biochemistry, 41, s. 1857-1865.
12. Elmer W.H., 2012, Using earthworms to improve soil health and suppress diseases, The Connecticut Agriculture Experiment Station (www.ct.gov/caes).
13. Gonet S., 2007, Ochrona zasobów materii organicznej, [w:] S.S. Gonet, M. Markiewicz (red.), Rola materii organicznej w środowisku, PTSH, Wrocław.
14. GUS, 2018, Rocznik Statystyczny Rolnictwa, Główny Urząd Statystyczny, Warszawa.
15. Haines-Young R.H., Potschin M.B., 2018, Common International Classification of Ecosystem Services (CICES) V5.1. and Guidance on the Application of the Revised Structure, Nottingham.
16. Hickman Z.A., Reid B.J., 2008, Earthworm assisted bioremediation of organic contaminants, Environment International, 34, 7, s. 1072-1081. https://doi.org/10.1016/j.envint.2008.02.013
17. Ivask M., Kuu A., Sizov E., 2007, Abundance of earthworm species in Estonian arable soils, European Journal of Soil Biology, 43, s. 39-42. https://doi.org/10.1016/j.ejsobi.2007.08.006
18. Jégou D., Cluzeau D., Hallaire V., Balesdent J., Tréhen P., 2000, Burrowing activity of the earthworms Lumbricus terrestris and Aporrectodea giardi and consequences on C transfers in soil, European Journal of Soil Biology, 36, s. 27-34. https://doi.org/10.1016/S1164-5563(00)01046-3
19. Johnson-Maynard J.L., Umiker K.J., Guy S.O., 2007, Earthworm dynamics and soil physical properties in the first three years of no-till management, Soil and Tillage Research, 94, s. 338-345. https://doi.org/10.1016/j.still.2006.08.011
20. Kasprzak K., 1986, Skąposzczety glebowe III, Rodzina Dżdżownice (Lumbricidae), Klucz do oznaczania bezkręgowców Polski, Wydawnictwo Naukowe PWN, Warszawa.
21. Keith A.M., Robinson D.A., 2012, Earthworms as Natural Capital: Ecosystem Service Providers in Agricultural Soils, Economology Journal, 2, s. 91-99.
22. Kondracki J., 2011, Geografia regionalna Polski, Wydawnictwo Naukowe PWN, Warszawa.
23. Kowaliński S., Gonet S., 1999, Materia organiczna gleb, [w:] S. Zawadzki (red.), Gleboznawstwo, PWRiL, Warszawa, s. 237-263.
24. Kuzyakov Y., Blagodatskaya E., 2015, Microbial hotspots and hot moments in soil: concept and review, Soil Biology and Biochemistry, 83, s. 184-199. https://doi.org/10.1016/j.soilbio.2015.01.025
25. Lavelle P., Martin A., 1992, Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropic, Soil Biology and Biochemistry, 24, s. 1491-1498. https://doi.org/10.1016/0038-0717(92)90138-N
26. Lee K.E., 1985, Earthworms: their ecology and relationships with soils and land use, Academic Press, London.
27. Lubbers I.M., Pulleman M.M., Van Groenigen J.W., 2017, Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biology and Biochemistry, 105, s. 12-24. https://doi.org/10.1016/j.soilbio.2016.11.008
28. Marinissen J.C.Y., de Ruiter P.C., 1993, Contribution of earthworms to carbon and nitrogen cycling in agro-ecosystems, Agriculture, Ecosystems and Environment, 47, s. 59-74. https://doi.org/10.1016/0167-8809(93)90136-D
29. Markiewicz M., Świtoniak M., Bednarek R., Gonet S., 2014, Zasoby materii organicznej, [w:] M. Świtoniak, M. Jankowski, R. Bednarek (red.), Antropogeniczne przekształcenia pokrywy glebowej Brodnickiego Parku Krajobrazowego, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
30. Mazur-Pączka A., Pączka G., Kostecka J., 2017, Lumbricidae in the Process of Monitoring of the State of Land Reclamation of Former Sulphur Mine in Jeziórko, Journal of Ecological Engineering, 18, 6, s. 53-58. https://doi.org/10.12911/22998993/76835
31. MEA, 2005, Ecosystems and Human Wellbeing: Current State and Trends. Volume 1, Island Press, Washington D.C.
32. Paoletti M.G., 1999, The role of earthworms for assessment of sustainability and as bioindicators, Agriculture Ecosystems and Environment, 74, s. 137-155. https://doi.org/10.1016/S0167-8809(99)00034-1
33. Parmelee R.W., Bohlen P.J., Blair J.M., 1998, Earthworms and Nutrient Cycling: Integrating Across the Ecological Hierarchy, [w] C.A. Edward (red.), Earthworm Ecology, CRC Press LLC, Boca Raton, Florida.
34. Pelosi C., Bertrand M., Roger-Estrade J., 2009, Earthworm community in conventional, organic and direct seeding with living mulch cropping systems, Agronomy for Sustainable Development, 29, s. 287-295. https://doi.org/10.1051/agro/2008069
35. Perreault J.M., Whalen J.K., 2006, Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture, Pedobiologia, 50, s. 397-403. https://doi.org/10.1016/j.pedobi.2006.07.003
36. Plisko J.D., 1973, Lumbricidae - Dżdżownice, Wydawnictwo PWN, Warszawa.
37. Price G.W., Voroney R.P., 2008, Response to annual applications of de-inked papermill biosolids by field earthworms on three agricultural soils, Applied Soil Ecology, 38, s. 230-238. https://doi.org/10.1016/j.apsoil.2007.10.014
38. Regulska E., 2012, Wskaźniki zoologiczne i krajobrazowe oraz ich przydatność do oceny rozwoju zrównoważonego krajobrazu wiejskiego (na przykładzie wybranych obszarów), rozprawa doktorska - maszynopis.
39. Regulska E., Kołaczkowska E., 2015, Landscape patch pattern effect on relationships between soil properties and earthworm assemblages: a comparison of two farmlands of different spatial structure, Polish Journal of Ecology, 63, 4, s. 549-558. https://doi.org/10.3161/15052249PJE2015.63.4.007
40. Regulska E., Kołaczkowska E., 2016, The role of habitat heterogenity in the relationships between soil properties and earthworm assemblages: a case study in Pomerania (Northern Poland), Geographia Polonica, 89, 3, s. 311-322. https://doi.org/10.7163/GPol.0061
41. Rundgren S., 1975, Vertical distribution of lumbricids in southern Sweden, Oikos, 26, s. 299-306. https://doi.org/10.2307/3543500
42. Sepp K., Ivask M., Kaasik A., Mikk M., Peepson A., 2005, Soil biota indicators for monitoring the Estonian agri-environmental programme, Agriculture, Ecosystems and Environment, 108, s. 264-273. https://doi.org/10.1016/j.agee.2005.02.007
43. Sinha M.P., Srivastava R., Gupta D.K., 2013, Earthworm biodiversity of Jharkhand: Taxonomic description, The Bioscan, 8, s. 293-310.
44. Solon J., Roo-Zielińska E., Affek A., Kowalska A., Kruczkowska B., Wolski J., Degórski M., Grabińska B., Kołaczkowska E., Regulska E., Zawiska I., 2017, Świadczenia ekosystemowe w krajobrazie młodoglacjalnym. Ocena potencjału i wykorzystania, Instytut Geografii i Przestrzennego Zagospodarowania PAN, Wydawnictwo Akademickie SEDNO, Warszawa.
45. TEEB, 2010, The Economics of Ecosystems and Biodiversity: Ecological and economic foundation. Earthscan, The Economics of Ecosystems and Biodiversity, Cambridge.
46. Uvarov A.V., Tiunov A.V., Scheu S., 2011, Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil, Soil Biology and Biochemistry, 43, s. 559-570.
47. Valckx J., Hermy M., Muys B., 2006, Indirect gradient analysis at different spatial scales of prorated and non-prorated earthworm abundance and biomass data in temperate agro-ecosystems, European Journal of Soil Biology, 42, s. 341-47. https://doi.org/10.1016/j.ejsobi.2006.09.002
File size 0,4 MB ; application/octet-stream
2300-8466 (on-line) ; oai:rcin.org.pl:70399 ; 2300-8466 (on-line) ; 10.7163/PrzG.2019.1.5
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Mar 25, 2021
Apr 17, 2019
1884
https://rcin.org.pl./publication/91947
Sawicki, Ludwik (1893–1972)
Krawczyk, Barbara (1935– ) Błażejczyk, Krzysztof
Staręga, Wojciech Krzysztof (1939– ) Stankiewicz, Alicja Polska Akademia Nauk. Muzeum i Instytut Zoologii
Poliński, Dariusz
Kasprzak, Krzysztof
Piotrowska, Danuta