Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 86 z. 3 (2014)
The aim of the analysis presented here has been to describe long-term variability in air temperature in Poland over the 1951-2010 period. Certain spatial aspects have also been discussed. In order to provide a representative and homogeneous temperature series, station data were averaged for 7 geographical regions of Poland, and for the country as a whole. The distinction drawn between shoreland, lakelands, lowlands, highlands, Subcarpathia, the Sudetes and the Carpathians is as adopted after Kondracki (2002). It takes account of such important factors underpinning spatial variability in temperaturę as altitude, relief, land use, and, indirectly (as a result of latitudinal distribution) also distance from the Baltic Sea and the amount of received solar radiation. In total, monthly average temperature values from 45 synoptic stations were used to calculate an area-averaged temperature for Poland (Table 1). Further study then entailed analysis of annual, seasonal and monthly series with a view to determining trends (at an adopted statistical signifi cance of =0.05), decadal average temperature variability, the longterm course to be noted for air temperature anomalies and the range of variability. The most signifi cant feature of the long-term (1951-2010) variability in annual air temperature in Poland is the statistically signifi cant increase that displays in every analysed region, with an average rate of change exceeding 0.2°C per decade (Table 2). At the seasonal level, an upward trend is to be noted for spring (+0.36°C/10 years) and summer (almost 0.2°C/10 years). In line with this, the decade 2001-2010 was the hottest in the analyzed period (Table 3, 8-10), with the exception of winter (Table 7), for which a slight decrease in average air temperature relative to the 1991-2000 period could be observed. When set against the whole 1951-2000 period, the rate of annual warming remains approximately constant though the summer-season contribution to the warming trendis clearly increasing, while the winter contribution is reduced. On a monthly basis, statistically signifi cant warming over the period is to be observed for February (by over 0.5°C/10 years – the highest rate for any month), during spring (i.e. in March, April and May), and in July and August. Analysis addressing the spatial distribution to the trend revealed that the highest rate of temperature increase is affecting northern Poland (the shoreland and lakeland belts) and the Carpathians, while the lowest rate of increases is to be observed for the highlands and the Sudetes. The long-term course of air temperature anomalies is dominated by short-term variability, which manifests itself in relatively large changes from year to year and with the occurrence of short warm and cold periods. However, where annual series are concerned there has been a noticeable run of warmer years since 1988 (Fig. 1), with only a few exceptions (e.g. 1996 and 2010). A similar situation applies to spring (Fig. 3) and summer (Fig. 4). Furthermore, the spatial cohesion displayed by air-temperature variability indicates that observed changes in thermal conditions in Poland are mainly driven by large-scale factor(s). Fluctuations in annual air temperature averaged for Poland do not exceed ±2°C. On the seasonal scale, variability range varies from 3.9°C in summer to 10.2°C in winter, while at the level of individual months the range is between 4.7°C in June and 16.3°C in February. Relatively small variations in air temperature characterisethe Baltic coast (the shoreland belt). Another feature of long-term air temperaturę change in Poland is that the values for extreme negative anomalies in winter are clearly larger than the positive ones. In the annual cycle, July is most often the warmest month (in 60% of the years during the 1951-2010 period), while the minimal average air temperaturę has most often been recorded in January (in 45% of years).
1. Alexandersson H., 1986, A homogeneity test applied to precipitation data, Journal of Climate, 6, s. 661-675.
2. Assessment of Climate Change for the Baltic Sea Basin, 2008, The BACC Author Team, Springer-Verlag, Berlin-Heidelberg.
3. Biernacik D., Filipiak J., Miętus M., Wójcik R., 2010, Zmienność warunków termicznych w Polsce po roku 1951. Rezultaty projektu KLIMAT, [w:] E. Bednorz, L. Kolendowicz (red.), Klimat Polski na tle klimatu Europy. Zmiany i ich konsekwencje, Bogucki Wydawnictwo Naukowe, Seria: Studia i Prace z Geografii i Geologii, 16, s. 9-21.
4. Cohen J.L., Furtado J.C., Barlow M.A., Alexeev V.A., Cherry J.E., 2012, Arctic warming, increasing snow cover and widespread boreal winter cooling, Environmental Research Letters, 7, 014007.
5. Czernecki B., Miętus M., 2010, Wstępna analiza występowania i zmienności termicznych pór roku w wybranych regionach Polski na przykładzie Pasa Pobrzeży Południowobałtyckich i Wyżyn Polskich, [w:] E. Bednorz (red.), Klimat Polski na tle klimatu Europy. Warunki termiczne i opadowe, Bogucki Wydawnictwo Naukowe, Seria: Studia i Prace z Geografii i Geologii, Poznań, 15, s. 9-26.
6. Degirmendžić J., Kożuchowski K., Żmudzka E., 2004, Changes of air temperature and precipitation in Poland in the period 1951-2000 and their relationship to atmospheric circulation, International Journal of Climatology, 24, s. 291-310.
7. Filipiak J., 2004, Zmienność temperatury powietrza na Wybrzeżu i Pojezierzu Pomorskim w drugiej połowie XX w., Seria: Monografie, IMGW, Warszawa.
8. Fortuniak K., Kożuchowski K., Żmudzka E., 2001, Trendy i okresowość zmian temperatury powietrza w Polsce w drugiej połowie XX wieku, Przegląd Geofizyczny, 46, 4, s. 283-303.
9. IPCC, 2009, Zmiana klimatu 2007: Raport Syntetyczny. Wkład Grup roboczych I, II i III do Czwartego Raportu Oceniającego Międzyrządowego Zespołu ds. Zmian Klimatu, red. R.K. Pachauri, A. Reisinger, Instytut Ochrony Środowiska, Warszawa
10. IPCC, 2013, Summary for Policymakers, [w:] Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change red. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Cambridge University Press, Cambridge, UK; New York, NY, USA.
11. Kejna M., Araźny A., Maszewski R., Przybylak R., Uscka-Kowalkowska J., Vizi Z., 2009, Daily minimum and maximum air temperature in Poland in the years 1951-2005, Bulletin of Geography – Physical Geography Series, 2, s. 35-56.
12. Kondracki J., 2002, Geografia regionalna Polski, Wydawnictwo Naukowe PWN, Warszawa.
13. Kożuchowski K., Degirmendžić J., Fortuniak K., Wibig J., 2000, Trends to changes in seasonal aspects of the climate in Poland, Geographia Polonica, 73, 2, s. 7-24.
14. Kożuchowski K., Żmudzka E., 2001, Ocieplenie w Polsce: Skala i rozkład sezonowy zmian temperatury powietrza w drugiej połowie XX wieku, Przegląd Geofizyczny, 46, 1-2, s. 81-90.
15. Marosz M., Wójcik R., Biernacik D., Jakusik E., Pilarski M., Owczarek M., Miętus M., 2011, Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu KLIMAT, Prace i Studia Geograficzne, 47, WGiSR UW, s. 51-66.
16. Miętus M., 1996, Zmienność temperatury i opadów w rejonie polskiego wybrzeża Morza Bałtyckiego i jej spodziewany przebieg do roku 2030, Materiały Badawcze IMGW, Seria Meteorologia, 26, Warszawa.
17. Miętus M., Filipiak J., 2004, The temporal and spatial patterns of thermal conditions in the area of the southwestern coast of the Gulf of Gdańsk (Poland) from 1951 to 1998, International Journal of Climatology, 24, 4, s. 499-509.
18. Miętus M. (red.), Jakusik E., Owczarek M., Biernacik D., Wójcik R., 2009, O przydatności rezultatów globalnych reanaliz NCEP i ERA-40 do opisu warunków termicznych w Polsce, Seria Monografie IMGW, Warszawa.
19. Paszyński J., Niedźwiedź T., 1999, Klimat, [w:] L. Starkel (red.), Geografia Polski. Środowisko przyrodnicze, Wydawnictwo Naukowe PWN, Warszawa.
20. Przybylak R., Vizi Z., Araźny A., Kejna M., Maszewski M., Uscka-Kowalkowska J., 2007, Poland`s climate extremes index, 1951-2005, Geographia Polonica, 80, 2, s. 47-58.
21. Schönwiese C.-D., Rapp J., Fuchs T., Denhard M., 1994, Observed climate trends in Europe 1891-1990, Meteorologische Zeitschrift, 3, 1, s. 22-28.
22. Smosarski W., 1923, Temperatura i opady na Pomorzu podług obserwacyj wieloletnich, Roczniki Nauk Rolniczych, 9, 3, s. 504-520.
23. Wibig J., Głowicki B., 2002, Trends of minimum and maximum temperature in Poland, Climate Research, 20, s. 123-133.
24. Woś A., 1999, Klimat Polski, Wydawnictwo Naukowe PWN, Warszawa.
25. Wójcik R., Miętus M., 2012, Rola cyrkulacji atmosferycznej w kształtowaniu długookresowych zmian temperatury powietrza w Polsce, [w:] Z. Bielec-Bąkowska, E. Łupikasza, A. Widawski (red.), Rola cyrkulacji atmosfery w kształtowaniu klimatu, Prace Wydziału Nauk o Ziemi Uniwersytetu Śląskiego, 74, Uniwersytet Śląski, Sosnowiec, s. 385-398.
26. Żmudzka E., 2009, Współczesne zmiany klimatu Polski, Acta Agrophysica, 13, 2, s. 555-568.
File size 2,4 MB ; application/pdf
oai:rcin.org.pl:49078 ; 0033-2143 ; 10.7163/PrzG.2014.3.3
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Copyright-protected material. May be used within the limits of statutory user freedoms
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Mar 25, 2021
Oct 20, 2014
5361
https://rcin.org.pl./publication/66951
Matuszko, Dorota Bartoszek, Krzysztof Soroka, Jakub
Kozłowska-Szczęsna, Teresa (1931– ) Limanówka, Danuta Niedźwiedź, Tadeusz (1942– ) Ustrnul, Zbigniew Paczos, Stanisław
Skrynyk, Oleh Błażejczyk, Krzysztof
Szmyd, Jakub Milewski, Paweł
Banach, Anna Kozakiewicz, Anna Kozakiewicz, Michał Liro, Anna
Kuchcik, Magdalena