Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Krüger, Eduardo : Autor ; Gobo, João : Autor ; Tejas, Graziela : Autor ; De Souza, Reginaldo : Autor
Przegląd Geograficzny T. 95 z. 3 (2023)
The relationship between growing rates of urbanisation and city warming has been evaluated in a very large number of urban climate studies. The work detailed here has focused on remote-sensing data, looking at changes in urbanisation over time in one of the newest cities in Brazil, i.e. Palmas in the northern region of the country, which serves as capital city of Tocantins. The youngest state in Brazil, Tocantins was only founded in 1988, with the construction of Palmas as capital commencing in 1989. Measured meteorological data were used to assess local climate changes in typical years, whereas urbanisation levels, generated for stepwise increments of 10 years, were obtained from the identification of vegetated and built-up classes in satellite imagery. Results suggest that changes in local climate were not always related to ongoing urbanisation in Palmas. Equally, despite promising changes in patterns of distribution of vegetation in given areas of Palmas over time – with an increase in high NDVI levels in 2021 that would potentially ameliorate local climate – thermal benefits did not prove to be detectable at the reference meteorological station.
;
The relationship between growing rates of urbanisation and city warming has been evaluated in a very large number of urban climate studies. The work detailed here has focused on remote-sensing data, looking at changes in urbanisation over time in one of the newest cities in Brazil, i.e. Palmas in the northern region of the country, which serves as capital city of Tocantins. The youngest state in Brazil, Tocantins was only founded in 1988, with the construction of Palmas as capital commencing in 1989. Measured meteorological data were used to assess local climate changes in typical years, whereas urbanisation levels, generated for stepwise increments of 10 years, were obtained from the identification of vegetated and built-up classes in satellite imagery. Results suggest that changes in local climate were not always related to ongoing urbanisation in Palmas. Equally, despite promising changes in patterns of distribution of vegetation in given areas of Palmas over time – with an increase in high NDVI levels in 2021 that would potentially ameliorate local climate – thermal benefits did not prove to be detectable at the reference meteorological station.
Bernard, J., Musy, M., Calmet, I., Bocher, E., & Kéravec, P. (2017). Urban heat island temporal and spatial variations: Empirical modeling from geographical and meteorological data. Building and Environment, 125, 423‑438. https://doi.org/10.1016/j.buildenv.2017.08.009
Betti, G., Tartarini, F., Nguyen, C., & Schiavon, S. (2022). CBE Clima Tool: a free and open-source web application for climate analysis tailored to sustainable building design. Version: 0.7.3. https://doi.org/10.48550/arxiv.2212.04609
Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515‑535. https://doi.org/10.1007/s00484-011-0453-2
da Silva, L.F.G. (2018). Percepção climática e conforto térmico: contribuição ao estudo interdisciplinar dos aspectos objetivos e subjetivos do clima em Palmas, TO. [Climatic and thermal comfort perception: contributions to the interdisciplinary study of objective and subjective aspectsof the climate in Palmas, TO] PhD Thesis (Ciências do Ambiente), Universidade Federal do Tocantins, Palmas, Brazil.
Fiala, D., Havenith, G., Bröde, P., Kampmann, B., & Jendritzky, G. (2012). UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56(3), 429‑441. https://doi.org/10.1007/s00484-011-0424-7
Gobo, J.P.A., Galvani, E., & Wollmann, C.A. (2018). Subjective human perception of open urban spaces in the Brazilian subtropical climate: a first approach. Climate, 6(2), 24. https://doi.org/10.3390/cli6020024
Gomes, F.D.G., Fuzeto, I.M.R., & Prates, R.P. (2020). Análise Multitemporal do Clima Urbano em Palmas, Estado do Tocantins - Brasil. InColloquium Exactarum, 12(2), 1‑14. https://doi.org/10.5747/ce.2020.v12.n2.e314
He, C., Shi, P., Xie, D., & Zhao, Y. (2010). Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters, 1(4), 213‑221. https://doi.org/10.1080/01431161.2010.481681
Hui, S.C., & Lam, J.C. (1992). Test reference year for comparative energy study. Hong Kong Engineer, 20(2), 13‑16.
IBGE. (2021). Malha Municipal. Rio de Janeiro, 2021. Instituto Brasileiro de Geografia e Estatística. Retrived from ibge.gov.br (15.01.2023).
IBGE. (2023). Estimativas da população residente no Brasil e Unidades da Federação com data de referência em 1 de julho de 2021. Instituto Brasileiro de Geografia e Estatística. Retrieved from ibge.gov.br (15.01.2023).
IBGE. (2023). Estatísticas Sociais/População/Censo Demográfico 1991. Instituto Brasileiro de Geografia e Estatística. Retrieved from https://ibge.gov.br (15.01.2023).
Imran, H.M., Hossain, A., Shammas, M.I., Das, M.K., Islam, M.R., Rahman, K., & Almazroui, M. (2022). Land surface temperature and human thermal comfort responses to land use dynamics in Chittagong city of Bangladesh. Geomatics, Natural Hazards and Risk, 13(1), 2283‑2312. https://doi.org/10.1080/19475705.2022.2114384
INMET. (2022). Normais Climatológicas do Brasil 1991‑2020. Instituto Nacional de Meteorologia, Brasília DF. Retrieved from portal.inmet.gov.br (15.01.2023).
Missenard, F.A. (1933). Température effective d'une atmosphere Généralisation température résultante d'un milieu. In: Encyclopédie Industrielle et Commerciale, Etude physiologique et technique de la ventilation (p. 131‑185). Paris: Librerie de l'Enseignement Technique.
National Climatic Data Center. (1976). Test Reference Year (TRY) - Tape Reference Manual TD-9706. Asheville, North Carolina: National Climatic Center.
Pinheiro, R.T., Marcelino, D.G., & Moura, D.R. (2020). Composição e diversidade arbórea nas quadras urbanizadas de Palmas, Tocantins. [Arboreous composition and diversity in the urbanized blocks of Palmas, Tocantins state]. Ciência Florestal, 30, 565‑582. https://doi.org/10.5902/1980509837601
Pires, E.G. (2017). Avaliação de parâmetros biofísicos, derivados de dados satelitários, na área de influência do reservatório da UHE Luís Eduardo Magalhães - TO. [Evaluation of biophysical parameters from satellite imagery within the radius of influence of the water reservoir of the hydroelectric power plant Luís Eduardo Magalhães - TO]. PhD Thesis (Doutorado em Geografia). Goiânia, Brazil: Instituto de Estudos Socioambientais, Universidade Federal de Goiás.
Ribeiro, N.G.R., & Pinheiro, R.T. (2022). Análise multitemporal da cobertura vegetal no plano diretor urbano de Palmas, Tocantins. [Multitemporal analysis of vegetation cover in the urban master plan of Palmas, Tocantins], Ciência Florestal,32, 1024‑1046. https://doi.org/10.5902/1980509843524
Sano, E.E., Rosa, R., Brito, J.L., & Ferreira, L.G. (2010). Land cover mapping of the tropical savanna region in Brazil. Environmental monitoring and assessment, 166, 113‑124. https://doi.org/10.1007/s10661-009-0988-4
Schneider, A., Friedl, M.A., & Potere, D. (2009). A new map of global urban extent from MODIS satellite data. Environmental Research Letters, 4(4), 044003. https://doi.org/10.1088/1748-9326/4/4/044003
Serrano, J., Roma, L., Shahidian, S., Belo, A.D., Carreira, E., Paniagua, L.L.,... & Marques da Silva, J. (2022). A technological approach to support extensive livestock management in the Portuguese Montado ecosystem. Agronomy, 12(5), 1212. https://doi.org/10.3390/agronomy12051212
Souza Jr, C.M., Shimbo, J., Rosa, M.R., Parente, L.L. Alencar, A., Rudorff, B.F.,... & Azevedo, T. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/rs12172735
Ward, K., Lauf, S., Kleinschmit, B., & Endlicher, W. (2016). Heat waves and urban heat islands in Europe: A review of relevant drivers. Science of the Total Environment, 569, 527‑539. https://doi.org/10.1016/j.scitotenv.2016.06.119
Xiong, Y., Huang, S., Chen, F., Ye, H., Wang, C., & Zhu, C. (2012). The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote sensing, 4(7), 2033‑2056. https://doi.org/10.3390/rs4072033
Xu, H. (2007). Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381‑1391. https://doi.org/10.14358/PERS.73.12.1381
Yuan, F., & Bauer, M.E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375‑386. https://doi.org/10.1016/j.rse.2006.09.003
Zaldo-Aubanell, Q., Serra, I., Sardanyés, J., Alsedà, L., & Maneja, R. (2021). Reviewing the reliability of Land Use and Land Cover data in studies relating human health to the environment. Environmental Research, 194, 110578. https://doi.org/10.1016/j.envres.2020.110578
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583‑594. https://doi.org/10.1080/01431160304987
Zhou, W., Yu, W., Zhang, Z., Cao, W., & Wu, T. (2023). How can urban green spaces be planned to mitigate urban heat island effect under different climatic backgrounds? A threshold-based perspective. Science of the Total Environment, 890, 164422. http://doi.org/10.1016/j.scitotenv.2023.164422
oai:rcin.org.pl:239795 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2023.3.2
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Jan 2, 2024
Nov 13, 2023
185
https://rcin.org.pl./publication/276086
Edition name | Date |
---|---|
Krüger E. i in. : The impact of urbanisation on local climate: a case study from Palmas, Brazil | Jan 2, 2024 |
Bröde, Peter Krüger, Eduardo L. Fiala, Dusan
Błażejczyk, Krzysztof Kuchcik, Magdalena Milewski, Paweł Dudek, Wojciech Kręcisz, Beata Błażejczyk, Anna Szmyd, Jakub Degórska, Bożena Pałczyński, Cezary Wydawnictwo Akademickie SEDNO Polska Akademia Nauk. Instytut Geografii i Przestrzennego Zagospodarowania
Kozłowska-Szczęsna, Teresa (1931– ) Błażejczyk, Krzysztof Piwowarczyk, Jacek
Mahdavi, Ardeshir Kiesel, Kristina Vuckovic, Milena
Kuchcik, Magdalena Błażejczyk, Krzysztof Milewski, Paweł Szmyd, Jakub
Kozłowska-Szczęsna, Teresa (1931– ) Błażejczyk, Krzysztof Krawczyk, Barbara (1935– )
Kulczyk, Sylwia Woźniak, Edyta Kowalczyk, Małgorzata Derek, Marta