RCIN and OZwRCIN projects

Object

Title: Cechy charakterystyczne i parametryzacje dochodzącego promieniowania fotosyntetycznie czynnego w środkowym basenie Biebrzy = Characteristics and parametrisations of the photosynthetically active radiation incoming in the Middle Biebrza Basin

Subtitle:

Przegląd Geograficzny T. 95 z. 3 (2023)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

The availability of light is one of the most important factors that determine the photosynthesis process. Wave bands of solar radiation from 400 to 700 nm are called photosynthetically active radiation (PAR) because of their ability to stimulate the process of photosynthesis. The limited data availability and the regional and local PAR dependence cause the need for independent research, specially in areas of high natural value.T he main goal of the work is to characterize the incoming photosynthetically active radiation in the Middle Biebrza Basin on the basis of a 9-year measurement series (2013-2021) from the Kopytkowo site (53°35'30.8”N, 22°53'32.4""E). The analysis was carried out for both instantaneous values and daily totals. In addition to the basic statistical characteristics, attention was paid to radiation on clear days and to the relationship between the PAR values on the Earth's surface and at the top of the atmosphere. Due to the limited availability of empirical data, simple parameterizations of PAR radiation were proposed for use in environmental studies. The research was carried out in the north-eastern part of Poland on the outskirts of Biebrza National Park in the Middle Biebrza Basin (Fig. 1). The area can be characterised as natural, almost unchanged, and uninhabited wetlands overgrown by swamp vegetation. The measurement site is located around 350 m north of the small village Kopytkowo with only a handful of permanent residents. The PQS1 PAR Quantum Sensor by Kipp & Zonen mounted at height 2.7 m a.g.l. was used to collect data (Fig. 2). The sensor is part of the eddy-covariance system that measures the exchange of greenhouse gases between the ecosystem and the atmosphere. Data were sampled every 10 seconds and then stored in datalogger (CR500) as 5-minute averages. The results are shown as photosynthetic photon flux density (PPFD) with micromole per square metre per second (µmol∙m⁻²∙s⁻¹) as unit and were collected in Central European Time (CET).

References:

Aguiar, L.J.G., Fischer, G.R., Ladle, R.J., Malhado, A.C.M., Justino, F.B., Aguiar, R.G., & da Costa, J.M.N. (2012). Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions. Theoretical and Applied Climatology, 108(3‑4), 631‑640. https://doi.org/10.1007/s00704-011-0556-z DOI
Akitsu, T.K., Nasahara, K.N., Ijima, O., Hirose, Y., Ide, R., Takagi, K., & Kume, A. (2022). The variability and seasonality in the ratio of photosynthetically active radiation to solar radiation: A simple empirical model of the ratio. International Journal of Applied Earth Observation and Geoinformation, 108, 102724. https://doi.org/10.1016/j.jag.2022.102724 DOI
Alados, I., & Alados-Arboledas, L. (1999). Direct and diffuse photosynthetically active radiation: measurements and modelling. Agricultural and Forest Meteorology, 93(1), 27‑38. https://doi.org/10.1016/S0168-1923(98)00107-5 DOI
Alados, I., Foyo-Moreno, I., & Alados-Arboledas, I. (1996). Photosynthetically active radiation - measurements and modelling. Agricultural and Forest Meteorology, 78(1), 121‑131. DOI
Awal, M.A., Koshi, H., & Ikeda, T. (2006). Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology, 139(1‑2), 74‑83. https://doi.org/10.1016/j.agrformet.2006.06.001 DOI
Badescu, V. (1997). Verification of some very simple clear and cloudy sky models to evaluate global solar irradiance. Solar Energy, 61(4), 251‑264. https://doi.org/10.1016/S0038-092X(97)00057-1 DOI
Bogdańska, B., & Podogrocki, J. (2000). Zmienność całkowitego promieniowania słonecznego na obszarze Polski w okresie 1961‑1995. Materiały Badawcze IMGW, Seria Meteorologia, 30, 1‑43.
Borzyszkowski, J., & Grzegorczyk, I. (2021). Kotlina Biebrzańska. W: A. Richling, J. Solon, A. Macias, J. Balon, J. Borzyszkowski, & M. Kistowski (red.), Regionalna geografia fizyczna Polski (s. 568‑569). Poznań: Bogucki Wydawnictwo Naukowe.
Bryant, D.A., & Frigaard, N.-U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology, 14(11), 488‑496. https://doi.org/10.1016/j.tim.2006.09.001 DOI
Bryś, K. (2015). Zasoby energii słonecznej w dolinie Widawy. Inżynieria Ekologiczna, 44, 53‑61. https://doi.org/10.12912/23920629/60025 DOI
Bryś, K., & Bryś, T. (2001). Wahania natężenia całkowitego promieniowania słonecznego w 55-letniej serii wrocławskiej (1946‑2000). Prace i Studia Geograficzne, 29, 161‑171.
Czarnowski, M. (1983). Promieniowanie fotosyntetycznie czynne. Wiadomości Botaniczne, 27(4), 271‑287.
de Blas, M., García-Rodríguez, A., García, I., & Torres, J.L. (2022). Validation and calibration of models to estimate photosynthetically active radiation considering different time scales and sky conditions. Advances in Space Research, 70(7), 1737‑1760. https://doi.org/10.1016/j.asr.2022.07.005
Dye, D.G. (2004). Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. Journal of Geophysical Research: Atmospheres, 109(D10), D10203. https://doi.org/10.1029/2003JD004251 DOI
Flanagan, L.B., Wever, L.A., & Carlson, P.J. (2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8(7), 599‑615. https://doi.org/10.1046/j.1365-2486.2002.00491.x DOI
Fortuniak, K., Pawlak, W., Bednorz, L., Grygoruk, M., Forysiak, J., Ziułkiewicz, M., Fortuniak, A., & Okupny, D. (2016). Stanowisko pomiarów turbulencyjnych strumieni gazów cieplarnianych w Kopytkowie (Biebrzański Park Narodowy). W: K. Fortuniak (red.), Wybrane problemy pomiarów wymiany gazowej pomiędzy powierzchnią ziemi a atmosferą na terenach bagiennych (s. 19‑31). Łódź: Katedra Meteorologii i Klimatologii WNG UŁ.
Frolking, S.E., Bubier, J.L., Moore, T.R., Ball, T., Bellisario, L.M., Bhardwaj, A., Carroll, P., Crill, P.M., Lafleur, P.M., McCaughey, J.H., Roulet, N.T., Suyker, A.E., Verma, S.B., Waddington, J.M., & Whiting, G.J. (1998). Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochemical Cycles, 12(1), 115‑126. https://doi.org/10.1029/97GB03367 DOI
Ge, S., Smith, R.G., Jacovides, C.P., Kramer, M.G., & Carruthers, R.I. (2011). Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theoretical and Applied Climatology, 105(1‑2), 107‑118. https://doi.org/10.1007/s00704-010-0368-6 DOI
Ghayas, H., Radhakrishnan, S.R., Sehgal, V.K., & Singh, S. (2022). Measurement and comparison of photosynthetically active radiation by different methods at Delhi. Theoretical and Applied Climatology, 150(3‑4), 1559‑1571. https://doi.org/10.1007/s00704-022-04252-9 DOI
Gorczyński, W. (1903). Badania nad przebiegiem rocznym insolacji. Rozpr. Wydz. Mat.-Przyr. Pol. Akad. Um., XLIII(ser. A), 1903.
Gorczyński, W. (1913). O insolacyi ziem polskich. W: Encyklopedia Polska, t.I. Geografia Fizyczna Ziem Polskich (s. 161‑170). Kraków: Wydawnictwo Polskiej Akademii Umiejętności.
Janjai, S., Sripradit, A., Wattan, R., Buntoung, S., Pattarapanitchai, S., & Masiri, I. (2013). A Simple Semi-Empirical Model for the Estimation of Photosynthetically Active Radiation from Satellite Data in the Tropics. International Journal of Photoenergy, 2013, 1‑6. https://doi.org/10.1155/2013/857072 DOI
Janjai, S., Wattan, R., & Sripradit, A. (2015). Modeling the ratio of photosynthetically active radiation to broadband global solar radiation using ground and satellite-based data in the tropics. Advances in Space Research, 56(11), 2356‑2364. https://doi.org/10.1016/j.asr.2015.09.020 DOI
Kleniewska, M., & Chojnicki, B.H. (2016). Zmienność całkowitego promieniowania słonecznego w Warszawie w latach 1964‑2013. Acta Geographica Lodziensia, 104, 67‑74.
Kowalska, N., Chojnicki, B.H., Józefczyk, D., Urbaniak, M., Juszczak, R., & Olejnik, J. (2013). Próba oceny produktywności ekosystemu w warunkach polowych Wielkopolski. Rocznik Ochrona Środowiska, 15, 2481‑2495.
Kuczmarska, L., & Paszyński, J. (1964). Rozkład promieniowania całkowitego na obszarze Polski. Przegląd Geograficzny, 4, 691‑702.
Landsberg, J.J., & Waring, R.H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209‑228. https://doi.org/10.1016/S0378-1127(97)00026-1 DOI
Liu, X., Rahman, T., Song, C., Yang, F., Su, B., Cui, L., Bu, W., & Yang, W. (2018). Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 224, 91‑101. https://doi.org/10.1016/j.fcr.2018.05.010 DOI
Matuszko, D. (2009). Wpływ zachmurzenia na usłonecznienie i całkowite promieniowanie słoneczne na przykładzie krakowskiej serii pomiarów. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego. https://core.ac.uk/download/pdf/232008296.pdf
Matuszko, D., & Celiński-Mysław, D. (2016). Warunki solarne Krakowa i możliwości ich wykorzystania w helioenergetyce. Acta Scientarum Polonorum, 15(1), 103‑111. https://doi.org/10.15576/ASP.FC/2016.15.1.103 DOI
McCree, K.J. (1972). Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology, 10, 443‑453. https://doi.org/10.1016/0002-1571(72)90045-3 DOI
Mõttus, M., Sulev, M., Baret, F., Lopez-Lozano, R., & Reinart, A. (2012). Photosynthetically Active Radiation: Measurement and Modeling. W: R.A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology (s. 7902‑7932). New York: Springer. https://doi.org/10.1007/978-1-4419-0851-3 DOI
Murkowski, A. (2002). Wpływ chłodu i zwiększonego PAR na fluorescencję chlorofilu w liściach roślin pomidora. Zeszyty Problemowe Postępów Nauk Rolniczych, 481(1), 199‑203.
Nöjd, P., & Hari, P. (2001). Instantaneous PAR estimated using long records of daily temperature and rainfall. Agricultural and Forest Meteorology, 109(1), 47‑59. https://doi.org/10.1016/S0168-1923(01)00258-1 DOI
Okruszko, H. (1973). Przyrodniczo-rolnicza charakterystyka doliny Biebrzy. Zeszyty Problemowe Postępów Nauk Rolniczych, 134, 173‑199.
Oświt, J. (1991). Roślinność i siedliska zabagnionych dolin rzecznych na tle warunków wodnych. Roczniki Nauk Rolniczych, Ser. D., 221.
Pilarski, J., & Kocurek, M. (2014). Dystrybucja Promieniowania w roślinach. Prace Instytutu Elektrotechniki, 267, 109‑120.
Pilarski, J., Tokarz, K., & Mocurek, M. (2012). Plant adaptation to light spectra composition and intensity. Prace Instytutu Elektrotechniki, 256, 243‑236.
Podstawczyńska, A. (2009). UV and global solar radiation in Łódź, Central Poland. International Journal of Climatology, 30(1), 1‑10. https://doi.org/10.1002/joc.1864 DOI
Sakowska, K., Juszczak, R., Uździcka, B., & Olejnik, J. (2012). Zmienność dobowa strumieni CO2 wymienianych między atmosferą a rożnymi uprawami rolniczymi. Woda-Środowisko-Obszary Wiejskie, 2012(38), 221‑244.
Shibles, R. (1976). Terminology Pertaining to Photosynthesis. Crop Science, 16(3), 437‑438. https://doi.org/10.2135/cropsci1976.0011183X001600030033x DOI
Stenz, E. (1922). Natężenie promieniowania słonecznego i insolacja w Warszawie według pomiarów w okresie 1913‑1918. W: Rocznik Państ. Inst. Meteor. za rok 1919.
Tamulewicz, J. (1988). Promieniowanie aktywne fotosyntetycznie w okresie wegetacyjnym na Nizinie Wielkopolskiej w rejonie Turwi. Badania Fizjograficzne Nad Polską Zachodnią. Seria A: Geografia Fizyczna, 40, 67‑74.
Tsubo, M., & Walker, S. (2005). Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. Theoretical and Applied Climatology, 80(1), 17‑25. https://doi.org/10.1007/s00704-004-0080-5 DOI
Wandji Nyamsi, W., Blanc, P., Augustine, J.A., Arola, A., & Wald, L. (2019). A New Clear-Sky Method for Assessing Photosynthetically Active Radiation at the Surface Level. Atmosphere, 10(4), 219. https://doi.org/10.3390/atmos10040219 DOI
Wane, O., Ramírez Ceballos, J.A., Ferrera-Cobos, F., Navarro, A.A., Valenzuela, R.X., & Zarzalejo, L.F. (2022). Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain. Land, 11(10). https://doi.org/10.3390/land11101868 DOI
Xu, J., Lv, Y., Liu, X., Wei, Q., Qi, Z., Yang, S., & Liao, L. (2019). A general non-rectangular hyperbola equation for photosynthetic light response curve of rice at various leaf ages. Scientific Reports, 9(1), 1‑8. https://doi.org/10.1038/s41598-019-46248-y DOI
Yu, X., Wu, Z., Jiang, W., & Guo, X. (2015). Predicting daily photosynthetically active radiation from global solar radiation in the Contiguous United States. Energy Conversion and Management, 89, 71‑82. https://doi.org/10.1016/j.enconman.2014.09.038 DOI
Ziułkiewicz, M., Forysiak, J., Fortuniak, A., Fortuniak, K., Kloss, M., & Okupny, D. (2014). Selected environmental characteristics of the greenhouse gases measurement site at wetland of the Biebrza National Park, Poland. West Siberian Peatlands and Carbon Cycle: Past and Present, 152‑154.

Relation:

Przegląd Geograficzny

Volume:

95

Issue:

3

Start page:

291

End page:

311

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

oai:rcin.org.pl:239798 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2023.3.5

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information