Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 92 z. 3 (2020)
The Ground Penetrating Radar (GPR) method potentially offers many possibilities for fast and reliable lithostratigraphic sediment models to be developed. From a cognitive point of view, this represents a major simplification and shortening of procedures with which information about sediments can be obtained. And from the point of view of the economy of operations, there can be a significant reduction in costs and time of research in shallow geology and the stratigraphy of areas where unconsolidated clastic sediments are of superficial occurrence. Also noteworthy is the possibility for the results of GPR surveys to be deployed in support of geological mapping, as well as in the shallow exploration of resources and hydrogeological studies.The most major advantage of the GPR method related to the possibility of the structure of forms being observed in full shape. In the absence of large outcrops, geophysical prospection of geomorphological forms is helpful, insofar as we are able to translate the results of geophysical surveys into the actual lithostratigraphic system of sediments building a specific form.Against that background, the research presented in this article forms part of the work to develop radar stratigraphy, as an important support for direct geological research (Huggenberger et al., 1994; Van Overmeeren, 1998; Beres et al., 1999, Overgaard and Jakobsen, 2001; Jakobsen and Overgaard, 2002; Neal, 2004; Lejzerowicz et al., 2014; Żuk and Sambrook Smith, 2015; Lejzerowicz et al., 2018). It also points to the research potential of the GPR method in determining the genesis of form. The discussion on the way kames form has been going on in the literature for years (Niewiarowski, 1959; 1961; Karczewski, 1971; Klajnert, 1978; Jaksa, 2003; Terpiłowski, 2008). The studies presented here do not suffice to allow the matter to be determined comprehensively, even though they do provide for verification of the opinions of previous researchers.The area forming the subject of this article is defined by Niewiarowski (1959) as the dead ice zone because of the characteristic set of forms (dead ice moraines, kames and eskers). Like modern researchers (Terpiłowski, 2008), Niewiarowski points to the importance of sub-Quaternary surface elevations in the formation of cracks in the ice sheet, with this leading on to the formation of kame hills above such elevations. This would also seem to have been one of the reasons for the formation in the mass of ice of lakes whose filling with sediment and melting ice walls took the form of kames.The great advantage of the GPR method lies in its ability to recognise macrostructural sediment patterns in glacilimic forms. This diagnosis allows for the high-probability assessment of the genesis of form, especially in the context of its position being determined in the marginal zone of the ice sheet. Also looking extremely promising is the capacity for the thickness of fine clastic sediments lying on till to be determined using GPR. It allows for the determination of the way in which a given form is rooted.Described as they are in brief only, test results for selected sites serve to confirm the great usefulness of the GPR method in the recognition of shallow lithostratigraphy of clastic sediments. Nevertheless, this should not be the only method used to recognise the geological structure of forms and sediments. Significant interpretation ambiguities mean that the GPR method should act in support of direct lithostratigraphic research, not merely serving as an alternative to it. GPR surveys offer a depiction particularly close to the real one – of sediment present in homogeneous sediments in relation to electrical parameters. Sediments ideal for GPR surveys would for example be fine dry sands or silts – and it is precisely these sediments that built most of the investigated kame forms.
Annan A.P., Davis J.L., 1976, Impulse radar soundings in permafrost, Radio Science, 11, s. 383-394. https://doi.org/10.1029/RS011i004p00383
Annan A.P., Davis J.L., 1977, Radar range analysis for geological materials, Geological Survey of Canada, Report of Activities, Part B, Paper 77-1B, s. 117-124. https://doi.org/10.4095/102767
Beiping J., Mitsuno T., Akae T., Nagahori K., 1996, Measurement of Soil Dielectric Constant by Frequency Domain Reflectometry and its Application to Soil Moisture Measurement of Specified Depth, Transactions of The Japanese Society of Irrigation, Drainage and Reclamation Engineering, 182, s. 201-206.
Beres M., Green A.G., Huggenberger P., Horstmeyer H., 1995, Mapping the architecture of glaciofluvial sediments with 3-D georadar, Geology, 23, s. 1087-1090. https://doi.org/10.1130/0091-7613(1995)023<1087:MTAOGS>2.3.CO;2
Beres M., Huggenberger P., Green A.G., Horstmeyer H., 1999, Using two- and three- dimentional georadar methods to characterize glaciofluvial architecture, Sedimentary Geology, 129, s. 1-24. https://doi.org/10.1016/S0037-0738(99)00053-6
Błaszkiewicz M., Kordowski J., Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1: 50 000, ark. Kowalewo Pomorskie (322), Centralne Archiwum Geologiczne PIG, Warszawa, materiały niepublikowane.
Borkowski W., 1990, Results of Subsurface Interface Radar. Geophysical studies of the Krzemionki banded flint mines, Archeometry, 90, s. 740-746.
Busby J.P., Merritt J.W., 1999, Quaternary deformation mapping with ground penetrating radar, Journal of Applied Geophysics, 41, s. 75-91. https://doi.org/10.1016/S0926-9851 (98)00050-0
Czuryłowicz K., Lejzerowicz A., Kowalczyk S., Wysocka A., 2014, The origin and depositional architecture of Paleogenequartz-glauconite sands in the Lubartów area, eastern Poland, Geological Quarterly, 58, 1, s. 125-144. https://doi.org/10.7306/gq.1137
Davis J.L., Annan A.P., 1989, Ground penetrating radar for high resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, s. 531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x
Drozd M., Trzepla M., 2005, Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1: 50 000, ark. Wąbrzeźno (283). Centralne Archiwum Geologiczne PIG, Warszawa.
Drozd M., Trzepla M., 2005, Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1: 50 000, ark. Książki (284), Centralne Archiwum Geologiczne PIG, Warszawa.
Huggenberger P., Meier E., Pugin A., 1994, Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: advances in data-processing and facies analysis, Journal of Applied Geophysics, 31, 171-184. https://doi.org/10.1016/0926-9851 (94)90056-6
Jakobsen P.R., Overgaard T., 2002, Georadar facies and glaciotectonic structures in ice marginal deposits, northwest Zealand, Denmark, Quaternary Science Reviews, 21, s. 917-927. https://doi.org/10.1016/S0277-3791 (01)00045-2
Jaksa A., 2003, O badaniach kemów w Polsce, [w:] B. Gruszka (red.), Kemy i ozy: stary problem w nowym, sedymentologicznym ujęciu: Terenowe Warsztaty Sedymentologiczne 08-12 września 2003, Uniwersytet Śląski, Uniwersytet Łódzki, Sosnowiec, s. 3-15.
Jol H.M., Young R., Fisher T.G., Smith D.G., Meyers R.A., 1996, Ground Penetrating Radar of eskers, kame terraces, and moraines: Alberta and Saskatchewan, Canada, [w:] GPR'96, 6th International Conference on Ground Penetrating Radar, Proceedings, Tohoku University, Sendai, Japan, s. 439-443.
Karczewski A., 1971, Zmienność litologiczna i strukturalna kemów Pomorza Zachodniego a zagadnienie ich klasyfikacji, Prace Komisji Geograficzno-Geologicznej, Poznańskie Towarzystwo Przyjaciół Nauk, 11, 3, s. 1-57.
Klajnert Z., 1978, Zanik lodowca warciańskiego na Wysoczyźnie Skierniewickiej i jej północnym przedpolu, Acta Geographica Lodziensia, 28.
Kostic B., Becht A., Aigner T., 2005, 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implications for hydrostratigraphy, Sedimentary Geology, 181, s. 143-171. https://doi.org/10.1016/j.sedgeo.2005.07.004
Kowalkowski A., 2004, Rozpoznawanie i klasyfikacja wytworzonych w środowisku peryglacjalnym i ekstraperyglacjalnym stref przekształceń i glebopokryw stokowych, Regionalny Monitoring Środowiska Przyrodniczego, 5, s. 47-94.
Lamparski P., 1992, Podpowierzchniowy system radarowy SIR-3, Przegląd Geologiczny, 40, 11, s. 681-683.
Lamparski P., 2001, Possibility of using Ground Penetrating Radar Method to determine the stratigraphy of the clastic deposits, [w:] Ground Penetrating Radar (GPR) in Sediments: Applications and Interpretation, 20-21.08.2001, Geological Society of London, University College London, Londyn, s. 34.
Lamparski P., 2004, Formy i osady czwartorzędowe w świetle badań georadarowych, Prace Geograficzne IGiPZ PAN, 194, Warszawa.
Lejzerowicz A., 2018, Internal architecture of fluvial deposits and the morphology of the selected sections of Narew River valley in Warsaw area (central Poland) based on GPR investigations, [w:] Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, 2018, s. 1-4. https://doi.org/10.1109/ICGPR.2018.8441570
Lejzerowicz A., Czuryłowicz K., Kowalczyk S., Wysocka A., 2014, Ground Penetrating Radar and sedimentological investigations of quartz-glauconite sands in the Lubartów area (south-east Poland), [w:] Proceedings of the 15th International Conference on Ground Penetrating Radar, GPR, 30.06-4.07.2014, Brussels, Belgium. https://doi.org/10.1109/ICGPR.2014.6970422
Lejzerowicz A., Kowalczyk S., 2016, Fluvial architecture of Vistula River deposits in Nature Reserve Świderskie Islands (Warsaw area, central Poland) based on Ground Penetrating Radar (GPR) images, [w:] Proceedings of the 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, 2016, s. 1-6. https://doi.org/10.1109/ICGPR.2016.7572597
Lejzerowicz A., Kowalczyk S., 2018, Użyteczność badań GPR do identyfikacji cech wewnętrznych osadów rzeki Wisły na obszarach NATURA 2000, Prace i Studia Geograficzne, Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego, 63, 2, s. 7-20.
Lejzerowicz A., Kowalczyk S., Wysocka A., 2012, Sedimentary architecture and ground penetrating radar (GPR) analysis of sandy-gravel esker deposits in Kozlow, Central Poland, [w:] Proceedings of the 14th International Conference on Ground Penetrating Radar (GPR) June 4-8, 2012, Shanghai, China, s. 670-675. https://doi.org/10.1109/ICGPR.2012.6254946
Lejzerowicz A., Kowalczyk S., Wysocka A., 2014, The usefulness of ground-penetrating radar images for the research of a large sand-bed braided river: case study from the Vistula River (central Poland), Geologos, 20, 1, s. 35-47. https://doi.org/10.2478/logos-2014-0003
Lejzerowicz A., Wysocka A., Kowalczyk S., 2018, Application of Ground Penetrating Radar method combined with sedimentological analyses in studies of glaciogenic sediments in Central Poland, Studia Quaternaria, 35, 2, s. 103-119. https://doi.org/10.2478/squa-2018-0008
Minet J.S., Lambot G., Delaide J.A., Huisman H., Vereecken H., Vanclooster M., 2010, A generalized frequency domain reflectometry modeling technique for soil electrical properties determination, Vadose Zone Journal, 9, s. 1063-1072. https://doi.org/10.2136/vzj2010.0004
Moorman B.J., Judge A.S., Smith D.G., 1991, Examining fluvial sediments using ground penetrating radar in British Columbia, Geological Survey of Canada, Current Research, Part A, Paper 91-1A, s. 31-36. https://doi.org/10.4095/132493
Morey R.M., 1974, Continuous subsurface profiling by impulse radar, [w:] Proceedings of Engineering Foundation Conference on Subsurface Exploration for Underground Excavation and Heavy Construction, New York, s. 213-232.
Neal A., 2004, Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Science Reviews, 66, s. 261-330. https://doi.org/10.1016/j.earscirev.2004.01.004
Niewiarowski W., 1959, Formy polodowcowe i typy deglacjacji na Wysoczyźnie Chełmińskiej, Studia Societatis Scientiarum Torunensis, sec. C, 6, 5, Toruń.
Niewiarowski W., 1961, Kemy okolic Leningradu i próba porównania ich z kemami polskimi, Przegląd Geograficzny, 33, s. 443-467.
Olszak J., Karczewski J., 2008, Przydatność profilowań georadarowych w interpretacji budowy tarasów rzecznych (dolina Kamienicy, polskie Karpaty Zewnętrzne), Przegląd Geologiczny, 56, 4, s. 330-334.
Overgaard T., Jakobsen P.R., 2001, Mapping of glaciotectonic deformation in an ice marginal environment with ground penetrating radar, Journal of Applied Geophysics, 47, 3-4, s. 191-197. https://doi.org/10.1016/S0926-9851 (01)00064-7
Piotrowski A., 1989, Uwagi o paleogeografii jeziora Dąbie w świetle badań radarowych prowadzonych w systemie SIR, Studia i Materiały Oceanologiczne, 56, Geologia Morza, 4, s. 289-291.
Raed A., Al-Asadi A., Mouazen M., 2014, Combining frequency domain reflectometry and visible and near infrared spectroscopy for assessment of soil bulk density, [w:] Soil and Tillage Research, 135, s. 60-70. https://dx.doi.org/10.1016/j.still.2013.09.002
Razowski M., 1985, Opracowanie wyników badań radarowych przeprowadzonych w systemie SIR na jeziorze Dąbie i Roztoce Odrzańskiej w Szczecinie, Krakowskie Przedsiębiorstwo Geodezyjne.
Russel A.J., Knudsen Ó., Fay H., Marren P.M., Heinz J., Tronicke J., 2001, Morphology and sedimentology of a giant supraglacial, ice-walled, jökulhlaup channel, Skeiðarárjökull, Iceland: implications for esker genesis, Global and Planetary Change, 28, s. 193-216. https://doi.org/10.1016/S0921-8181 (00)00073-4
Sadura S., Martini I.P., Endres A.L., Wolf K., 2006, Morphology and GPR stratigraphy of a frontal part of an end moraine of the Laurentide Ice Sheet: Paris Moraine near Guelph, ON, Canada, Geomorphology, 75, s. 212-225. https://doi.org/10.1016/j.geomorph.2005.01.014
Słowik M., 2011, Changes of river bed pattern and traces of anthropogenic intervention: The example of using GPR method (the Obra River, western Poland), Applied Geography, 31, s. 784-799. https://doi.org/10.1016/j.apgeog.2010.08.004
Słowik M., 2011, Reconstructing migration phases of meandering channels by means of ground-penetrating radar (GPR): the case of the Obra River, Poland, Journal of Soils and Sediments, 11, 7, s. 1262-1278. https://doi.org/10.1007/s11368-011-0420-x
Słowik M., 2012, Influence of measurement conditions on depth range and resolution of GPR images: The example of lowland valley alluvial fill (the Obra River, Poland), Journal of Applied Geophysics, 85, s. 1-14. https://doi.org/10.1016/j.jappgeo.2012.06.007
Słowik M., 2014, Reconstruction of anastomosing river course by means of geophysical and remote sensing surveys (the Middle Obra Valley, W Poland), Geografiska Annaler. Series A, Physical Geography, 96, s. 195-216. https://doi.org/10.1111/geoa.12042
Słowik M., 2014, Analysis of fluvial, lacustrine and anthropogenic landforms by means of ground penetrating radar (GPR): field experiment, Near Surface Geophysics, 12, s. 777-791. https://doi.org/10.3997/1873-0604.2014033
Smith D.G., Jol H.M., 1995, Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in Quaternary sediments, Journal of Applied Geophysics, 33, 1-3, s. 93-100. https://doi.org/10.1016/0926-9851 (95)90032-2
Terpiłowski S., 2008, Kemy jako wskaźnik deglacjacji Niziny Podlaskiej podczas zlodowacenia Warty, Lublin: Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej.
Theta Probe Soil Moisture Sensor Type ML2, User Manual, ML2-UM-1, 1998, Delta-T Devices Ltd., Burwell, Cambridge, England, https://www.delta-t.co.uk/wp-content/uploads/2016/11/ML2--Thetaprobe-UM.pdf (01.07.2020).
Topp G.C., Davis J.L., Annan A.P., 1980, Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resoururces Research, 16, 3, s. 574-582. https://doi.org/10.1029/WR016i003p00574
Ulriksen C.P.F., 1982, Application of impulse radar to civil engineering, Lund.
Van Dam R.L., 2012, Landform characterization using geophysics - Recent advances, applications, and emerging tools, Geomorphology, 137, s. 57-73. https://doi.org/10.1016/j.geomorph.2010.09.005
Van Dam R.L., Schlager W., 2000, Identifying the causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analyses, Sedimentology, 47, s. 435-449. https://doi.org/10.1046/j.1365-3091.2000.00304.x
Van Dam R.L., Van Den Berg E.H., Van Heteren S., Kasse C., Kenter J.A.M., Groen K., 2002, Influence of organic matter on radar-wave reflection: Sedimentological implications, Journal of Sedimentary Research, 72, s. 341-352. https://doi.org/10.1306/092401720341
Van Loon A., Błaszkiewicz M., Degórski M., 2012, The role of permafrost in shaping the Late Glacial relief of northern Poland, Netherlands Journal of Geosciences, 91, 1-2, s. 223-231. https://doi.org/10.1017/S001677460000161X
Van Overmeeren R.A., 1998, Radar facies of unconsolidated sediments in the Netherlands: a radar stratigraphy interpretation method for hydrogeology, Journal of Applied Geophysics, 40, 1-3, s. 1-18. https://doi.org/10.1016/S0926-9851 (97)00033-5
Wysota W., 2007, Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1: 50 000, ark. Golub-Dobrzyń (323), Centralne Archiwum Geologiczne PIG, Warszawa.
Żuk T., Sambrook Smith G.H., 2015, Stratygrafia radarowa - metoda analizy danych georadarowych 3D w badaniu środowisk sedymentacyjnych na przykładzie osadów rzecznych, Przegląd Geograficzny, 87, 3, s. 439-456. https://doi.org/10.7163/PrzG.2015.3.2
oai:rcin.org.pl:145850 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2020.3.7
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Sep 12, 2024
Nov 3, 2020
809
https://rcin.org.pl./publication/180608
Lamparski, Piotr (1962– )
Żuk, Tomasz Sambrook Smith, Gregory H.
Sarris, Apostolos Donati, Jamieson Kalayci, Tuna Cuenca García, Carmen Simon, François-Xavier Manataki, Meropi Triantafylopoulou, Pegky
Kaneda, Akihiro Nishiguchi, Kazuhiko Nawabi, Yama Watanabe, Yoshiro
Harris, Chrys Gaffney, Chris Newman, Mark Langton, Mike Walker, Roger Ottersen, Mariah
Bowman, Robert C. Combs, Evelynn A.
Nitychoruk, Jerzy Welc, Fabian Wysocki, Jacek
Conyers, Lawrence B.