Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 88 z. 3 (2016)
The main island of the Svalbard Archipelago, Spitsbergen, is located in the centre of the Atlantic sector of the Arctic and is exposed to an increased dynamic of change in weather conditions, the shaping of which is affected by specific synoptic situations. In the work described here, it was the impact of atmospheric circulation on cloudiness over Spitsbergen that was studied, by reference to (1983-2013) average daily values for cloudiness at the Ny-Ålesund, Svalbard Lufthavn and Hornsund Meteorological Stations. The influence of atmospheric circulation was examined on the basis of a simplified Calendar of synoptic situations for Spitsbergen (Niedźwiedź, 2013), whose classification embraces 5 cyclonic, 5 anticyclonic and 1 undetermined type. The average daily values for cloudiness referred to provided the basis for further calculations of annual, monthly and seasonal values, with results then being presented in relation to the course over years and seasons, as conditioned by the amount of sunlight reaching Spitsbergen at different times of the year. The analysis thus took in the polar day, the polar night and two much shorter (spring and autumn) transition periods, which are of somewhat different lengths at the several different stations. Annual courses for the proportions of days capable of being regarded as characteristic were then described, while a final stage to the work concerned the relationship between cloudiness and the eleven aforementioned types of atmospheric circulation. Average values for sky cover with different circulation types were calculated, as were the conditional probabilities relating to the occurrence of the characteristic days. The results demonstrate that, notwithstanding environmental conditions, atmospheric circulation plays an important role in cloud formation over the whole island. However, despite the relatively short distances involved, the stations analysed were found to be characterised by significant differences where the spatial distribution of values for levels of sky cover by cloud were concerned. The causal relationship between cloudiness and respective circulation types is not as important as the direction of advection of air masses. The highest mean daily cloudiness values were reported in circulation types entailing advection from the south, i.e. Sc+SWc and Sa+SWa (relating to both cyclonic and anticyclonic types). Lowest average levels of cloudiness co-occurred under the Na+NEa and Nc+NEc circulation types. The total number of characteristic days at particular stations is also quite varied. Ny-Ålesund reports the most cloudless days (N=0%) and clear days (N<20%) during the year. The same is true of the number of completely overcast days (N=100%). The largest number of cloudy days (N>80%) characterises Hornsund, the most southerly of the stations on Spitsbergen studied. At Svalbard Lufthavn, average cloudiness during the polar night is greatest when the air flow originates in the north. The greatest variation in the distribution of cloudiness is to be observed during the polar night (at Svalbard Lufthavn and Ny-Ålesund) or in the autumn transitional period (Hornsund).
1. Adamczyk R., Ustrnul Z., 2008, Uwarunkowania cyrkulacyjne zachmurzenia ogólnego w strefie polarnej Europy, Problemy Klimatologii Polarnej, 18, s. 79-86.
2. Araźny A., 2003, Przebieg roczny wilgotności względnej w Arktyce Norweskiej w okresie 1971-2000, Problemy Klimatologii Polarnej, 13, s. 107-115.
3. Araźny A., 2008, Bioklimat Arktyki Norweskiej i jego zmienność w okresie 1971-2000, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
4. Bednorz E., Kaczmarek D., Dulik P., 2016, Atmospheric conditions governing anomalies of the summer and winter cloudiness in Spitsbergen, Theoretical and Applied Climatology, 123, s. 1-10.
5. Beesley J.A., Mortiz R.E., 1999, Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean, Journal of Climate, 12, s. 395-415.
6. Brümmer B., Thiemann S., Kirchgäbner A., 2000, A cyclone statistics for the Arctic based on European Centre re-analysis data, Meteorology and Atmospheric Physics, 75, s. 233-250.
7. Curry J.A., Rossow W.B., Randall D., Schramm J.L., 1996, Overview of Arctic cloud and radiation characteristics, Journal of Climate, 9, s. 1731-1764.
8. Eastman R., Warren S.G., 2010, Interannual variations of arctic cloud types in relation to sea ice, Journal of Climate, 23, 15, s. 4216-4232.
9. http://eklima.met.no/
10. http://hornsund.igf.edu.pl/hornsund.old/swiatlo.html
11. IMGW, 2000-2001, Roczniki Meteorologiczne Hornsund (red. M. Miętus) 1982/83-1999/2000, Instytut Meteorologii i Gospodarki Wodnej Oddział Morski, Gdynia.
12. IPCC, 2007, Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
13. Kay J.E., Gettelman A., 2009, Cloud influence on and response to seasonal Arctic sea ice loss, Journal of Geophysical Research, 114, D18204, doi:10.1029/2009JD011773.
http://dx.doi.org/10.1029/2009JD011773 -
14. Kejna M., 2012, Radiation conditions, [w:] R. Przybylak, A. Araźny, M. Kejna, R. Maszewski, Topoclimatic Diversity in Forlandsundet Region (NW Spitsbergen) in Global Warming Conditions, Nicolaus Copernicus University, Oficyna Wydawnicza Turpress, Toruń, s. 53-76.
15. Kotarba A., Widawski A., 2008, Satelitarna charakterystyka zachmurzenia ogólnego nad Svalbardem w roku 2007 w powiązaniu z cyrkulacją atmosfery, Problemy Klimatologii Polarnej, 18, s. 127-140.
16. Kryza M., Szymanowski M., Migała K., 2011, Zastosowanie modelu R.Sun do określenia dobowych sum promieniowania rzeczywistego na lodowcu Werenskjolda (SW Spitsbergen), Prace i Studia Geograficzne, 47, s. 435-442.
17. Liu Y., Key J.R., Francis J.A., Wang X., 2007, Possible causes of decreasing cloud cover in the Arctic winter, 1982-2000, Journal of Geophysical Research, 34, L14705, doi: 10.1029/2007GL030042.
http://dx.doi.org/10.1029/2007GL030042 -
18. Marsz A.A., 2013, Cloudiness and sunshine duration, [w:] A.A. Marsz, A. Styszyńska (red.), Climate and Climate Change in Hornsund, Svalbard, Gdynia Maritime University, Gdynia, s. 101-125.
19. Marsz A.A., Niedźwiedź T., Styszyńska A., 2013, Współczesne zmiany Klimatu Spitsbergenu jako podstawa wyznaczania zmian kraobrazowych. [w:] Z. Zwoliński, A. Kostrzewski, M. Pulina (red.), Dawne i współczesne geoekosystemy Spitsbergenu, Bogucki Wydawnictwo Naukowe, Poznań, s. 391-413.
20. Matuszko D., Soroka J., 2013, Zachmurzenie Spitsbergenu, Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków.
21. Meier W.N., Gerland S., Granskog M.A., Key J.R., Haas C., Hovelsrud G.K., Kovacs K., Makshtas A., Michel C., Perovich D., Reist J.D., van Oort B.E.H., 2011, Chapter 9: Sea ice, [w:] Snow, Water, Ice and Permafrost in the Arctic: Climate Change and the Cryosphere, Arctic Monitoring and Assessment Programme, Oslo, Norway.
22. Meteorological Conditions Hornsund, Spitsbergen 2000/2001, 2001, Publications of the Institute of Geophysics Polish Academy of Science, D-57(341), Warszawa.
23. Meteorological Conditions Hornsund, Spitsbergen 2001/2002, 2003, Publications of the Institute of Geophysics Polish Academy of Science, D-60(351), Warszawa.
24. Niedźwiedź T. (red.), 2003, Słownik meteorologiczny, Polskie Towarzystwo Geofizyczne, IMGW, Warszawa.
25. Niedźwiedź T., 2006, Główne cechy cyrkulacji atmosfery nad Spitsbergenem (XII 1950-IX 2006), Problemy Klimatologii Polarnej, 16, s. 91-105.
26 Niedźwiedź T., 2013, Kalendarz typów cyrkulacji dla Spitsbergenu, Wydział Nauk o Ziemi Uniwersytetu Śląskiego, Sosnowiec (zbiór komputerowy dostępny w Katedrze Klimatologii).
27. Niedźwiedź T., 2013, The atmospheric circulation, [w:] A.A. Marsz, A. Styszyńska (red.), Climate and Climate Change in Hornsund, Svalbard, Gdynia Maritime University, Gdynia, s. 57-74.
28. Niedźwiedź T., Łupikasza E., 2015, Dynamika wskaźników cyrkulacji nad Spitsbergenem, Problemy Klimatologii Polarnej, 25, s. 153-167.
29. Niedźwiedź T., Ustrnul Z., 1989, Wpływ cyrkulacji atmosferycznej na kształtowanie się zachmurzenia w Hornsundzie, [w:] Dorobek i perspektywy Polskich Badań Polarnych. XVI Sympozjum Polarne, Uniwersytet Mikołaja Kopernika, Toruń, s. 158-160.
30. Palm S.P., Marshak A., Yang Y., Spinhirne J., Markus T., 2010, The influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate, Journal of Geophysics Research, 115, D21209; doi: 10.1029/2010JDO13900.
31. Polyakov I.V., Walsh J.E., Kwok R., 2012, Recent changes of Arctic multiyear sea ice coverage and the likely causes, Bulletin of the American Meteorological Society, 93, s. 145-151.
32. Przybylak R., 2003, The Climate of the Arctic, Atmospheric and Oceanographic Science Library, 26, Kluwer Academic Publishers, Dordrecht-Boston-London.
33. Przybylak R., 2007, Współczesne zmiany klimatu w Arktyce, [w:] A. Styszyńska, A.A. Marsz (red.), Zmiany klimatyczne w Arktyce i Antarktyce w ostatnim pięćdziesięcioleciu XX wieku i ich implikacje środowiskowe, Akademia Morska, Gdynia, s. 93-110.
34. Przybylak R., Araźny A., Kejna M., Maszewski R., 2012, Topoclimatic Diversity in Forlandsundet Region (NW Spitsbergen) in Global Warming Conditions, Nicolaus Copernicus University, Oficyna Wydawnicza Turpress, Toruń.
35. Raatz W.E., 1981, Trends in cloudiness in the Arctic since 1920, Atmospheric Environment, 15, s. 1503-1506.
36. Schweiger A., 2004, Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations, Geophysical Research Letters, 31, L12207.
http://dx.doi.org/10.1029/2004GL020067 -
37. Schweiger A.J., Key J.R., 1992, Arctic cloudiness: comparison of ISCCPC2 and NIMBUS-7 satellite-derived cloud products with a surface based climatology, Journal of Climate, 5, s. 1514-1527.
38. Soroka J., Matuszko D., 2013, Trudności w wizualnej ocenie zachmurzenia w Hornsundzie, Problemy Klimatologii Polarnej, 23, s. 147-156.
39. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Maslanik J., Barrett A.P., 2012, The Arctic's rapidly shrinking sea ice cover: a research synthesis, Climate Change, 110, s. 1005-1027.
http://dx.doi.org/10.1007/s10584-011-0101-1 -
40. Turner J., Gareth J.M., 2011, Climate change in the Polar Regions, Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Colorado.
http://dx.doi.org/10.1017/CBO9780511975431 -
41. Vavrus S.J., Bhatt U.S., Alexeev V.A., Factors influencing simulated changes in future arctic cloudiness, Journal of Climatology, 24, s. 4817-4830.
42. Vowinckel E., Orvig S., 1962, Relation between solar radiation income and cloud type in the Artic, Journal of Applied Meteorology, 1, s. 552-559.
43. Webber G.R., 1994, On the seasonal variation of local relationship between temperature, temperature range, sunshine and cloudiness, Theoretical and Applied Climatology, 50, 1-2, s. 15-22.
File size 0,7 MB ; application/pdf
oai:rcin.org.pl:59905 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2016.3.2
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 3.0 PL license
Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Mar 25, 2021
Oct 18, 2016
1789
https://rcin.org.pl./publication/79785
Łupikasza, Ewa Lipiński, Oskar
Mathiesen, S. D. S¡rmo, W. Haga, O. E. Norberg, H. J. Utsi, T. H. A. Tyler, N. J. C.
Elmhagen, B. Tannerfeldt, M. Verucci, P. Angerbj”rn, A.
Hersteinsson, P. Macdonald, D. W.
Rydell, J. Strann, K. B. Speakman, J. R.
Pond, C. M. Mattacks, C. A. Prestrud, P.
Stempniewicz, Lech
Clutton-Brock, J. Kitchener, A. C. Lynch, J. M.