Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 81 z. 3 (2009)
Comparative analysis was performed using the scales of ecological indicator values for plant species proposed by: (1) Ellenberg for the flora of Germany, (2) Landolt for the flora of Switzerland and (3) Zarzycki for the flora of Poland, in relation to six environmental features concerned with climate (i.e. light intensity [L], temperature [T] continentality [K]) and soil (moisture [F], acidity [R] and nitrogen content [N]). Species characteristic for deciduous forest of class Querco-Fagetea were used as the ”tool” in the comparison. Numbers of species differ – from 83 to 105 depending on environmental feature. It was assumed that pairs of ecological scales are similar if the percentage share of species is above 50% in corresponding degrees of scales. The main aim of the analysis is to determine if compared scales originating from different parts of Central Europe are similar (or distinct) in the ecological diagnosis (climatic and soil) diagnosis as expressed by the three indicator values (corresponding to the three scales) for each feature of the geographical environment. Results were interpreted in respect of two opposing hypotheses. The first of these assumes that the scales compared are similar, with the particular degrees conforming to the same ranges of actual measurements, while differences concern the assessment of the requirements of species as indicators of environmental conditions. The second, alternative hypothesis assumes that the scales are different (most often shifted by one degree), while the ecological requirements of the species are similar. The analysis of histograms of frequency of the particular species categories shows that support for the first of the two hypotheses is provided by the pairs of scales for: (1) light intensity [L] of Ellenberg and Zarzycki; (2) temperature [T] of Ellenberg and Landolt; (3) degree of continentality [K] of Landolt and Zarzycki; (4) moisture of the soil [F] of Ellenberg and Zarzycki; (5) acidity of the soil [R] of Ellenberg and Zarzycki; and (6) nitrogen content in the soil [N] of Ellenberg and Landolt. as regards the second hypothesis, the distribution of frequencies for species categories in the histograms allows for the explanation of differences (shifts) within the following pairs of scales compared: (1) temperature [T] of Ellenberg and Zarzycki; (2) climate continentality [K] of Ellenberg and Zarzycki, (3) soil acidity [R] of Ellenberg and Landolt, and of Landolt and Zarzycki; and (4) nitrogen content in the soil [N] of Landolt and Zarzycki. It is worth noting that similar results and conclusions were achieved when the same ecological scales of indicator values were compared, albeit on the basis of species from meadows in class Molinio-Arrhenathereta (Roo-Zielinska, 2004). This means that a total of c. 200 species (of meadow and deciduous forest) were evaluated. However it is only 10% of K Zarzycki list of Polish flora (Zarzycki et al., 2002), but ecological spectra and tolerance of both groups (with large number of species) are very different. The obtained results suggest a need to continue with such comparative analyses of European ecological scales for groups of characteristic species belonging to different phytosociological units, and to find proper ecological indicator values for the Polish flora and plant communities.
1. Diekmann M., 2003, Species indicator values as an important tool in applied plant ecology – a review, Basic and Applied Ecology, 4, s. 1–14.
2. Dzwonko Z., Loster S., 2000, Testing of Ellenberg and Zarzycki indicator values as predictors of soil and light conditions in woodlands, [w:] Kazimierz Zarzycki: Festschrift, red. J. Wójcicki, J. Wołek, U. Korzeniak, Fragmenta Floristica et Geobotanica Annaler, 45, 1–2, s. 49–62.
3. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulissen D., 1991, Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobotanica, 18, Göttingen.
4. Falińska K., 1997, Ekologia roślin. Podstawy teoretyczne, populacja, zbiorowisko, procesy, Wydawnictwo Naukowe PWN, Warszawa.
5. Hill M.O., Carey P.D., 1997, Prediction of yield in the Rothamsted Park grass experiment by Ellenberg indicator values, Journal of Vegetation Science, 8, s. 579–586.
6. Kershaw K.A., 1978, Ilościowa i dynamiczna ekologia roślin, PWN, Warszawa.
7. Kozłowska A., 1991, Comparative analysis of ecological indicative values (according to Ellenberg and Zarzycki), Wiadomości Botaniczne, 35, 1, s. 11–21.
8. Landolt E., 1977, Ökologische Zeigerwerte zur Schweizer Flora, Veröffentlichungen Geobotanisches Institut der ETH Stiftung Rübel, 64, Zürich.
9. Lindacher R. (red.), 1995, Phanart Datenbank der Gefässpflanzen Mitteleuropas, Erklarung der Kennzahlen, Aufbau und Inhalt (Phanart, Database of Centraleuropean Vascular Plants, Explanation of codes, Structure and Contents), Veröffentlichungen Geobotanischen Institut der ETH Stiftung Rübel, 125, Zürich.
10. Matuszkiewicz J.M., 2001, Zespoły leśne Polski, Wydawnictwo Naukowe PWN, Warszawa.
11. Matuszkiewicz W., 2001, Przewodnik do oznaczania zbiorowisk roślinnych Polski, Wydawnictwo Naukowe PWN, Warszawa.
12. Motyka J., 1962, Ekologia roślin. Część ogólna i analityczna, Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.
13. Podbielkowski Z., 1991, Geografia roślin, Wydawnictwa Szkolne i Pedagogiczne, Warszawa.
14. Remmert H., 1985, Ekologia, Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.
15. Roo-Zielińska E., 2004, Fitoindykacja jako narzędzie oceny środowiska fizycznogeograficznego. Podstawy teoretyczne i analiza porównawcza stosowanych metod, Prace Geograficzne, IGiPZ PAN, 199, Warszawa.
16. Roo-Zielińska E., Solon J., Degórski M., 2007, Ocena stanu i przekształceń środowiska przyrodniczego na podstawie wskaźników geobotanicznych, krajobrazowych i glebowych (Podstawy teoretyczne i przykłady zastosowań), Monografie, 9, IGiPZ PAN, Warszawa.
17. Schaffers A.P., Sykora K.V., 2000, Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements, Journal of Vegetation Science, 11, s. 225–244.
18. Strain B.R., Billings D.W. (red.), 1974, Vegetation and environment, Handbook of Vegetation Science, 6, W. Junk, The Haque.
19. Szweykowscy A. i J., 1993, Słownik botaniczny, Wiedza Powszechna, Warszawa.
20. Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J., Korzeniak U., 2002, Ecological Indicator Values of Vascular Plants of Poland. Ekologiczne liczby wskaźnikowe roślin naczyniowych Polski, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.
File size 1,2 MB ; application/pdf
oai:rcin.org.pl:55588 ; 0033-2143 ; 10.7163/PrzG.2009.3.1
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Copyright-protected material. May be used within the limits of statutory user freedoms
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Mar 25, 2021
Jul 29, 2015
1729
https://rcin.org.pl./publication/75393
Roo-Zielińska, Ewa (1948– )
Roo-Zielińska, Ewa (1948– )
Roo-Zielińska, Ewa (1948– )
Roo-Zielińska, Ewa (1948– )
Roo-Zielińska, Ewa (1948– ) Grabińska, Bożenna (1952– )
Roo-Zielińska, Ewa (1948– ) Matuszkiewicz, Jan Marek (1946– )