• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Long-term and seasonal variability of air masses temperature in Kraków (1961-2023)

Creator:

Bielec-Bąkowska, Zuzanna : Autor Affiliation ORCID

Date issued/created:

2025

Resource type:

Text

Subtitle:

Geographia Polonica Vol. 98 No. 1 (2025)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

This study attempted to determine temperature changes in southern Poland due to changes in the thermal characteristics of individual air masses. For this purpose, the daily air temperature values at the Kraków-Balice synoptic station were used, as well as the types of atmospheric circulation and air masses for southern Poland from the daily Calendar of Atmospheric Circulation Types for southern Poland. The study showed that the temperature increase of individual air masses was most significant in tropical air masses and was noticeable in both average and extreme daily temperature values. It was also found that the increase in temperature in particular air masses is associated with an increased number of warmer days, although not necessarily hot ones.

References:

Alekseev, G. W., Podgornyj, I. A., Swiaschchennikov, P. N. & Hrol, W. P. (1991). Osobennosti formirovanija klimata i ego izmennchivosti v poljarnoj klimaticheskoj sisteme atmosfera - morskoj led - okean. In B. A. Krutskich (Ed.), Klimaticheskij rezhim Arktiki na rubezhe XX i XXI v. (pp. 4-29). St. Petersburg: Gidromietieoizdat.
Bartoszek, K., & Kaszewski, B. M. (2022). Changes in the frequency and temperature of air masses over east-central Europe. International Journal of Climatology, 42(16), 8214-8231. https://doi.org/10.1002/joc.7704 DOI
Bartoszek, K., & Matuszko, D. (2021). The influence of atmospheric circulation over Central Europe on the long-term variability of sunshine duration and air temperature in Poland. Atmospheric Research, 251. https://doi.org/10.1016/j.atmosres.2020.105427 DOI
Bielec-Bąkowska, Z. (2014). Silne wyże nad Europą (1951-2010). Katowice: Wydawnictwo Uniwersytetu Śląskiego.
Bielec-Bąkowska, Z. (2022). Long-term changes in circulation conditions over southern Poland for the period 1874-2020. Miscellanea Geographica, 26(4), 237-248. https://doi.org/10.2478/mgrsd-2022-0010 DOI
Bielec-Bąkowska, Z., & Piotrowicz, K. (2021). Air pressure change. In M. Falarz (Ed.), Climate Change in Poland: Past, Present and Future (pp. 151-176). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-70328-8_7 DOI
Bielec-Bąkowska, Z., & Twardosz, R. (2023). Exceptionally cold and warm spring months in Kraków against the background of atmospheric circulation (1874-2022). Pure and Applied Geophysics, 180, 3351-3370. https://doi.org/10.1007/s00024-023-03324-9 DOI
Brunner, L., Hegerl, G., & Steiner, A. K. (2017). Connecting atmospheric blocking to European temperature extremes in spring. Journal of Climate, 30(2), 585-594. https://doi.org/10.1175/JCLI-D-16-0518.1 DOI
Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R., Taschetto, A. S., Garreaud, R. D., … & Vera, C.(2020). Climate impacts of the El Niño–southern oscillation on South America. Nature Reviews Earth& Environment, 1(4), 215-231. https://doi.org/10.1038/s43017-020-0040-3 DOI
Campbella, S., Remenyib, T. A., Whiteb, Ch. J. & Johnstona, F. H. (2018). Heatwave and health impact research: A global review. Health & Place, 53, 210-218. https://doi.org/10.1016/j.healthplace.2018.08.017 DOI
Cattiaux, J., Vautard, R. & Yiou, P. (2011). North-Atlantic SST amplified recent wintertime European land temperature extremes and trends, Climate Dynamics, 36, 2113-2128. https://doi.org/10.1007/s00382-010-0869-0 DOI
Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T., Quan, X. W., Xu, T. & Murray, D. (2011). Was there a basis for anticipating the 2010 Russian heat wave? Geophysical Research Letters, 38(6). https://doi.org/10.1029/2010GL046582 DOI
Francis, J. A. & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather in mid-lati-tudes. Geophysical Research Letters, 39(6). https://doi.org/10.1029/2012GL051000 DOI
Gössling, S., Neger, C., Steiger, R., & Bell, R. (2023). Weather, climate change, and transport: A review.Natural Hazards, 118, 1341-1360. https://doi.org/10.1007/s11069-023-06054-2 DOI
Herrera-Lormendez, P., Mastrantonas, N., Douville, H., Hoy, A., & Matschullat, J. (2022). Synoptic circulation changes over Central Europe from 1900 to 2100: Reanalyses and coupled model intercomparison Project phase 6. International Journal of Climatology, 42(7), 4062-4077. https://doi.org/10.1002/joc.7481 DOI
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R.Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896 DOI
Kendall, M. G. (1975). Rank correlation methods (4th ed.). London: Charles Griffin.
Krauskopf, T., & Huth, R. (2020). Temperature trends in Europe: Comparison of different data sources. Theoretical and Applied Climatology, 139, 1305-1316. https://doi.org/10.1007/s00704-019-03038-w DOI
Lee, C. C. (2020). Trends and variability in airmass frequencies: Indicators of a changing climate. Journal of Climate, 33(19), 8603-8617. https://doi.org/10.1175/jcli-d-20-0094.1 DOI
Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13(3), 245-259. https://doi.org/10.2307/1907187 DOI
Marosz, M., Miętus, M., & Biernacik, D. (2023). Features of multiannual air temperature variability in Poland (1951-2021). Atmosphere, 14(2), 282. https://doi.org/10.3390/atmos14020282 DOI
Martyn, D. (1992). Climates of the world. Amsterdam: Elsevier.
Met Office. (2022). Unprecedented extreme heatwave, July 2022. Met Office National Climate Information Centre. https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2022/2022_03_july_heatwave_v1.pdf
Niedźwiedź, T. (1981). Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły. Kraków: Uniwersytet Jagielloński
Niedźwiedź, T. (2024). Calendar of Atmospheric Circulation Types for Southern Poland. https://us.edu.pl/instytut/inoz/kalendarz-typow-cyrkulacji/.
Niedźwiedź, T., & Ustrnul, Z. (2021). Change of atmospheric circulation. In M. Falarz (Ed.), Climate Change in Poland: Past, Present and Future. Cham, Switzerland: Springer, pp. 123-150. https://doi.org/10.1007/978-3-030-70328-8_6 DOI
Peters, W., Bastos, A., Ciais, P., & Vermeulen, A. (2020). A historical, geographical and ecological perspective on the 2018 European summer drought. Philosophical Transactions of the Royal Society B, 375(1810). https://doi.org/10.1098/rstb.2019.0505 DOI
Petrou, I., Kassomenos, P., & Lee, C.,C. (2022). Trends in air mass frequencies across Europe. Theoretical and Applied Climatology, 148, 105-120. https://doi.org/10.1007/s00704-022-03921-z Pezza, A. B., Simmondsa, I., & Renwickb, J. A. (2007). Southern hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. International Journal of Climatology, 27(11), 1403-1419. https://doi.org/10.1002/joc.1477 DOI
Pfahl, S. (2014). Characterising the relationship between weather extremes in Europe and synoptic circulation features, Natural Hazards and Earth System Sciences, 14, 1461-1475. https://doi.org/10.5194/nhess-14-1461-2014 DOI
Piotrowicz, K. & Ciaranek, D. (2020). A selection of weather type classification systems and examples of their application. Theoretical and Applied Climatology, 140, 719-730. https://doi.org/10.1007/s00704-020-03118-2 DOI
Schemm, S., Sprenger, M., Martius, O., Wernli, H. & Zimmer, M. (2017). Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (1979-2014), Geophysical Research Letters, 44, 553-561. https://doi.org/10.1002/2016GL071451 DOI
Screen, J. A. (2014). Arctic amplification decreases temperature variance in northern mid to high-latitudes. Nature Climate Change, 4, 577-582. https://doi.org/10.1038/nclimate2268 DOI
Serreze, M. & Barry, R. (2011). Processes and impacts of Arctic amplification: a research synthesis. Global Planet Change, 77(1-2), 85-96. https://doi.org/10.1016/j.gloplacha.2011.03.004 DOI
Serreze, M. C. & Francis, J. A. (2006). The Arctic amplification debate. Climatic Change, 76, 241-264. https://doi.org/10.1007/s10584-005-9017-y DOI
Sinclair, V. A., Mikkola, J., Rantanen, M., & Räisänen, J. (2019). The summer 2018 heatwave in Finland. Weather, 74, 403-409. https://doi.org/10.1002/wea.3525 DOI
Skrzyńska, M., & Twardosz, R. (2023). Long-term changes in the frequency of exceptionally cold and warm months in Europe (1831-2020). International Journal of Climatology, 43, 2339-2351. https://doi.org/10.1002/joc.7978 DOI
Sykulski, P. & Bielec-Bąkowska, Z. (2017). Atmospheric fronts over Poland (2006-2015). Environmental & Socio-Economic Studies, 5(4), 29-39. https://doi.org/10.1515/environ-2017-0018 DOI
Trepińska, J. (Ed.). (1997). Wahania klimatu w Krakowie. Kraków: Instytut Geografii UJ.
Trigo, R. M., Osborn, T. J., & Corte-Real, J. M. (2002). The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Research, 20(1), 9-17. http://www.jstor.org/stable/24866789 DOI
Twardosz, R., & Bielec-Bąkowska, Z. (2022). Continental-scale monthly thermal anomalies in Europe during the years 1951-2018 and their occurrence in relation to atmospheric circulation. Geographia Polonica, 95(1), 97-116. https://doi.org/10.7163/GPol.0228 DOI
Twardosz, R., Walanus, A., & Guzik, I. (2021). Warming in Europe: recent trends in annual and seasonal temperatures. Pure and Applied Geophysics, 178, 4021-4032. https://doi.org/10.1007/s00024-021-02860-6 DOI
Ustrnul, Z., Wypych, A. & Czekierda, D. (2021). Air temperature change. In M. Falarz (Ed.), Climate Change in Poland: Past, Present and Future. Cham, Switzerland: Springer, pp. 275-330. https://doi.org/10.1007/978-3-030-70328-8_11 DOI
Więcław, M. (2010). Przestrzenne i sezonowe zróżnicowanie częstości występowania mas powietrza w Europie Środkowej w latach 1996-2005. In L. Kolendowicz (Ed.), Klimat Polski na tle klimatu Europy: Warunki cyrkulacyjne i radiacyjne (pp. 9-21). Poznań: Bogucki Wydawnictwo Naukowe.
WMO. (2022). State of the Climate in Europe 2021 (WMO-No. 1304). WMO: Geneva, Switzerland. https://digitallibrary.un.org/record/3994378?v=pdf
Zarrin, A., Ghaemi, H., Azadic, M., & Farajzadeh, M. (2010). The spatial pattern of summertime subtropi cal anticyclones over Asia and Africa: A climatological review. International Journal of Climatology, 30, 159-173. https://doi.org/10.1002/joc.1879 DOI
Zuo, J., Ren, H. & Li, W. (2015). Contrasting impacts of the Arctic oscillation on surface air temperature anomalies in Southern China between early and middle-to-late winter. Journal of Climate, 28(10), 4015-4026. https://doi.org/10.1175/JCLI-D-14-00687.1 DOI
Zvyagintsev, A. M., Blum, O. B., Glazkova, A. A., Kotelnikov, S. N., Kuznetsova, I. N., Lapchenko, V. A., … & Popikov, A. P. (2011). Air pollution over European Russia and Ukraine under the hot summer conditions of 2010. Izvestiya, Atmospheric and Oceanic Physics, 47(6), 699-707. https://doi.org/10.1134/S0001433811060168 DOI

Relation:

Geographia Polonica

Volume:

98

Issue:

1

Start page:

53

End page:

77

Detailed Resource Type:

Article

Resource Identifier:

oai:rcin.org.pl:244714 ; 0016-7282 (print) ; 2300-7362 (online) ; 0.7163/GPol.0292

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style:

This page uses 'cookies'. More information