Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Geographia Polonica Vol. 98 No. 1 (2025)
This study attempted to determine temperature changes in southern Poland due to changes in the thermal characteristics of individual air masses. For this purpose, the daily air temperature values at the Kraków-Balice synoptic station were used, as well as the types of atmospheric circulation and air masses for southern Poland from the daily Calendar of Atmospheric Circulation Types for southern Poland. The study showed that the temperature increase of individual air masses was most significant in tropical air masses and was noticeable in both average and extreme daily temperature values. It was also found that the increase in temperature in particular air masses is associated with an increased number of warmer days, although not necessarily hot ones.
Alekseev, G. W., Podgornyj, I. A., Swiaschchennikov, P. N. & Hrol, W. P. (1991). Osobennosti formirovanija klimata i ego izmennchivosti v poljarnoj klimaticheskoj sisteme atmosfera - morskoj led - okean. In B. A. Krutskich (Ed.), Klimaticheskij rezhim Arktiki na rubezhe XX i XXI v. (pp. 4-29). St. Petersburg: Gidromietieoizdat.
Bartoszek, K., & Kaszewski, B. M. (2022). Changes in the frequency and temperature of air masses over east-central Europe. International Journal of Climatology, 42(16), 8214-8231. https://doi.org/10.1002/joc.7704
Bartoszek, K., & Matuszko, D. (2021). The influence of atmospheric circulation over Central Europe on the long-term variability of sunshine duration and air temperature in Poland. Atmospheric Research, 251. https://doi.org/10.1016/j.atmosres.2020.105427
Bielec-Bąkowska, Z. (2014). Silne wyże nad Europą (1951-2010). Katowice: Wydawnictwo Uniwersytetu Śląskiego.
Bielec-Bąkowska, Z. (2022). Long-term changes in circulation conditions over southern Poland for the period 1874-2020. Miscellanea Geographica, 26(4), 237-248. https://doi.org/10.2478/mgrsd-2022-0010
Bielec-Bąkowska, Z., & Piotrowicz, K. (2021). Air pressure change. In M. Falarz (Ed.), Climate Change in Poland: Past, Present and Future (pp. 151-176). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-70328-8_7
Bielec-Bąkowska, Z., & Twardosz, R. (2023). Exceptionally cold and warm spring months in Kraków against the background of atmospheric circulation (1874-2022). Pure and Applied Geophysics, 180, 3351-3370. https://doi.org/10.1007/s00024-023-03324-9
Brunner, L., Hegerl, G., & Steiner, A. K. (2017). Connecting atmospheric blocking to European temperature extremes in spring. Journal of Climate, 30(2), 585-594. https://doi.org/10.1175/JCLI-D-16-0518.1
Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R., Taschetto, A. S., Garreaud, R. D., … & Vera, C.(2020). Climate impacts of the El Niño–southern oscillation on South America. Nature Reviews Earth& Environment, 1(4), 215-231. https://doi.org/10.1038/s43017-020-0040-3
Campbella, S., Remenyib, T. A., Whiteb, Ch. J. & Johnstona, F. H. (2018). Heatwave and health impact research: A global review. Health & Place, 53, 210-218. https://doi.org/10.1016/j.healthplace.2018.08.017
Cattiaux, J., Vautard, R. & Yiou, P. (2011). North-Atlantic SST amplified recent wintertime European land temperature extremes and trends, Climate Dynamics, 36, 2113-2128. https://doi.org/10.1007/s00382-010-0869-0
Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T., Quan, X. W., Xu, T. & Murray, D. (2011). Was there a basis for anticipating the 2010 Russian heat wave? Geophysical Research Letters, 38(6). https://doi.org/10.1029/2010GL046582
Francis, J. A. & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather in mid-lati-tudes. Geophysical Research Letters, 39(6). https://doi.org/10.1029/2012GL051000
Gössling, S., Neger, C., Steiger, R., & Bell, R. (2023). Weather, climate change, and transport: A review.Natural Hazards, 118, 1341-1360. https://doi.org/10.1007/s11069-023-06054-2
Herrera-Lormendez, P., Mastrantonas, N., Douville, H., Hoy, A., & Matschullat, J. (2022). Synoptic circulation changes over Central Europe from 1900 to 2100: Reanalyses and coupled model intercomparison Project phase 6. International Journal of Climatology, 42(7), 4062-4077. https://doi.org/10.1002/joc.7481
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R.Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896
Kendall, M. G. (1975). Rank correlation methods (4th ed.). London: Charles Griffin.
Krauskopf, T., & Huth, R. (2020). Temperature trends in Europe: Comparison of different data sources. Theoretical and Applied Climatology, 139, 1305-1316. https://doi.org/10.1007/s00704-019-03038-w
Lee, C. C. (2020). Trends and variability in airmass frequencies: Indicators of a changing climate. Journal of Climate, 33(19), 8603-8617. https://doi.org/10.1175/jcli-d-20-0094.1
Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13(3), 245-259. https://doi.org/10.2307/1907187
Marosz, M., Miętus, M., & Biernacik, D. (2023). Features of multiannual air temperature variability in Poland (1951-2021). Atmosphere, 14(2), 282. https://doi.org/10.3390/atmos14020282
Martyn, D. (1992). Climates of the world. Amsterdam: Elsevier.
Met Office. (2022). Unprecedented extreme heatwave, July 2022. Met Office National Climate Information Centre. https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2022/2022_03_july_heatwave_v1.pdf
Niedźwiedź, T. (1981). Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły. Kraków: Uniwersytet Jagielloński
Niedźwiedź, T. (2024). Calendar of Atmospheric Circulation Types for Southern Poland. https://us.edu.pl/instytut/inoz/kalendarz-typow-cyrkulacji/.
Niedźwiedź, T., & Ustrnul, Z. (2021). Change of atmospheric circulation. In M. Falarz (Ed.), Climate Change in Poland: Past, Present and Future. Cham, Switzerland: Springer, pp. 123-150. https://doi.org/10.1007/978-3-030-70328-8_6
Peters, W., Bastos, A., Ciais, P., & Vermeulen, A. (2020). A historical, geographical and ecological perspective on the 2018 European summer drought. Philosophical Transactions of the Royal Society B, 375(1810). https://doi.org/10.1098/rstb.2019.0505
Petrou, I., Kassomenos, P., & Lee, C.,C. (2022). Trends in air mass frequencies across Europe. Theoretical and Applied Climatology, 148, 105-120. https://doi.org/10.1007/s00704-022-03921-z Pezza, A. B., Simmondsa, I., & Renwickb, J. A. (2007). Southern hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. International Journal of Climatology, 27(11), 1403-1419. https://doi.org/10.1002/joc.1477
Pfahl, S. (2014). Characterising the relationship between weather extremes in Europe and synoptic circulation features, Natural Hazards and Earth System Sciences, 14, 1461-1475. https://doi.org/10.5194/nhess-14-1461-2014
Piotrowicz, K. & Ciaranek, D. (2020). A selection of weather type classification systems and examples of their application. Theoretical and Applied Climatology, 140, 719-730. https://doi.org/10.1007/s00704-020-03118-2
Schemm, S., Sprenger, M., Martius, O., Wernli, H. & Zimmer, M. (2017). Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (1979-2014), Geophysical Research Letters, 44, 553-561. https://doi.org/10.1002/2016GL071451
Screen, J. A. (2014). Arctic amplification decreases temperature variance in northern mid to high-latitudes. Nature Climate Change, 4, 577-582. https://doi.org/10.1038/nclimate2268
Serreze, M. & Barry, R. (2011). Processes and impacts of Arctic amplification: a research synthesis. Global Planet Change, 77(1-2), 85-96. https://doi.org/10.1016/j.gloplacha.2011.03.004
Serreze, M. C. & Francis, J. A. (2006). The Arctic amplification debate. Climatic Change, 76, 241-264. https://doi.org/10.1007/s10584-005-9017-y
Sinclair, V. A., Mikkola, J., Rantanen, M., & Räisänen, J. (2019). The summer 2018 heatwave in Finland. Weather, 74, 403-409. https://doi.org/10.1002/wea.3525
Skrzyńska, M., & Twardosz, R. (2023). Long-term changes in the frequency of exceptionally cold and warm months in Europe (1831-2020). International Journal of Climatology, 43, 2339-2351. https://doi.org/10.1002/joc.7978
Sykulski, P. & Bielec-Bąkowska, Z. (2017). Atmospheric fronts over Poland (2006-2015). Environmental & Socio-Economic Studies, 5(4), 29-39. https://doi.org/10.1515/environ-2017-0018
Trepińska, J. (Ed.). (1997). Wahania klimatu w Krakowie. Kraków: Instytut Geografii UJ.
Trigo, R. M., Osborn, T. J., & Corte-Real, J. M. (2002). The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Climate Research, 20(1), 9-17. http://www.jstor.org/stable/24866789
Twardosz, R., & Bielec-Bąkowska, Z. (2022). Continental-scale monthly thermal anomalies in Europe during the years 1951-2018 and their occurrence in relation to atmospheric circulation. Geographia Polonica, 95(1), 97-116. https://doi.org/10.7163/GPol.0228
Twardosz, R., Walanus, A., & Guzik, I. (2021). Warming in Europe: recent trends in annual and seasonal temperatures. Pure and Applied Geophysics, 178, 4021-4032. https://doi.org/10.1007/s00024-021-02860-6
Ustrnul, Z., Wypych, A. & Czekierda, D. (2021). Air temperature change. In M. Falarz (Ed.), Climate Change in Poland: Past, Present and Future. Cham, Switzerland: Springer, pp. 275-330. https://doi.org/10.1007/978-3-030-70328-8_11
Więcław, M. (2010). Przestrzenne i sezonowe zróżnicowanie częstości występowania mas powietrza w Europie Środkowej w latach 1996-2005. In L. Kolendowicz (Ed.), Klimat Polski na tle klimatu Europy: Warunki cyrkulacyjne i radiacyjne (pp. 9-21). Poznań: Bogucki Wydawnictwo Naukowe.
WMO. (2022). State of the Climate in Europe 2021 (WMO-No. 1304). WMO: Geneva, Switzerland. https://digitallibrary.un.org/record/3994378?v=pdf
Zarrin, A., Ghaemi, H., Azadic, M., & Farajzadeh, M. (2010). The spatial pattern of summertime subtropi cal anticyclones over Asia and Africa: A climatological review. International Journal of Climatology, 30, 159-173. https://doi.org/10.1002/joc.1879
Zuo, J., Ren, H. & Li, W. (2015). Contrasting impacts of the Arctic oscillation on surface air temperature anomalies in Southern China between early and middle-to-late winter. Journal of Climate, 28(10), 4015-4026. https://doi.org/10.1175/JCLI-D-14-00687.1
Zvyagintsev, A. M., Blum, O. B., Glazkova, A. A., Kotelnikov, S. N., Kuznetsova, I. N., Lapchenko, V. A., … & Popikov, A. P. (2011). Air pollution over European Russia and Ukraine under the hot summer conditions of 2010. Izvestiya, Atmospheric and Oceanic Physics, 47(6), 699-707. https://doi.org/10.1134/S0001433811060168
oai:rcin.org.pl:244714 ; 0016-7282 (print) ; 2300-7362 (online) ; 0.7163/GPol.0292
CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure
Apr 2, 2025
Apr 2, 2025
15
https://rcin.org.pl./publication/281477
Edition name | Date |
---|---|
Bielec-Bąkowska Z. : Long-term and seasonal variability of air masses temperature in Kraków (1961-2023) | Apr 2, 2025 |
Szafrańska, Ewa
Śleszyński, Przemysław
Kawecka-Endrukajtis, Barbara Tuszyńska-Rękawek, Halina Sielużycka, Jadwiga