• Wyszukaj w całym Repozytorium
  • Piśmiennictwo i mapy
  • Archeologia
  • Baza Młynów
  • Nauki przyrodnicze

Szukaj w Repozytorium

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Piśmiennictwo i mapy

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Archeologia

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Baza Młynów

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Nauki przyrodnicze

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Projekty RCIN i OZwRCIN

Obiekt

Tytuł: Soil structure and aggregate stability of A-horizons in different soil types across the Nitrta Valley slope, western Slovakia

Inny tytuł:

Geographia Polonica Vol. 98 No. 1 (2025)

Wydawca:

IGiPZ PAN

Miejsce wydania:

Warszawa

Opis:

24 cm

Abstrakt:

The aim of the study was to identify the impact of the basic soil properties and slope inclination on the distribution and stability of water-stable aggregates in three different land uses (deciduous forest, vineyard, arable soil) across three soil types (Luvic Chernic Phaeozem, Eutric Cambisol, Vermic Chernozem) on slopes in the Nitra Valley, western Slovakia. The analysis revealed that soil type significantly influences aggregate stability and soil structure vulnerability, while soil depth and organic carbon content do not. Changes in primary soil organic matter affected soil aggregation. Increased mineralization of soil organic matter (SOM) supported the formation of primarily large water-stable macro-aggregates (WSAma) > 3 mm, whereas the the immobilization of organic carbon in SOM led to the formation and stabilization of smaller WSAma 1-0.25 mm and waterstable micro-aggregates. Cambisol exhibited the highest stability in both dry and wet conditions as well as the lowest vulnerability of soil structure.

Bibliografia:

Affek, A. (2019). Wpływ gospodarki leśnej na terenach górskich na wybrane elementy środowiska - aktualny stan wiedzy. Przegląd Geograficzny, 91(1), 63-81, https://doi.org/10.7163/PrzG.2019.1.3 DOI
Affek, A., Gerlée, A., Sosnowska, A., & Zachwatowicz, M. (2019). Estimating the impact of logging on selected elements of the environment in the eastern part of the Polish Carpathians. Przegląd Geograficzny, 91(1), 83-106. https://doi.org/10.7163/PrzG.2019.1.4 DOI
Asano, M., & Wagai, R. (2014). Evidence of aggregate hierarchy at micro- to submicron scales in allophonic Andisol. Geoderma, 216, 62-74. https://doi.org/10.1016/j.geoderma.2013.10.005 DOI
Basset, C., Najm, M. A., Ghezzehei, T., Hao, X., & Daccache, A. (2023). How does soil structure affect water infiltration? A meta-data systematic review. Soil & Tillage Research, 226, 105577. https://doi.org/10.1016/j.still.2022.105577 DOI
Bedrna, Z., & Jenčo, M. (2016). Pedogeografia, Zákonitosti priestorovej diferenciácie pedosféry. Bratislava: UK.
Bochenek, W., & Kijowska-Strugała, M. (2021). Zmienność przepływów niżówkowych w wybranych zlewniach pogórskich i beskidzkich w latach 1988-2017. Przegląd Geograficzny, 93(1), 5-25. https://doi.org/10.7163/przg.2021.1.1 DOI
Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1-2), 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005 DOI
Bryk, M. (2016). Macrostructure of diagnostic B horizons relative to underlying BC and C horizons in Podzols, Luvisol, Cambisol, and Arenosol evaluated by image analysis. Geoderma, 263, 86-103. https://doi.org/10.1016/j.geoderma.2015.09.014 DOI
Bucała-Hrabia, A. (2023). Land-use changes and their impact on land degradation in the context of sustainable development of the Polish Western Carpathians during the transition to free-market economics (1986-2019). Geographia Polonica, 96(1), 131-143. https://doi.org/10.7163/gpol.0249 DOI
Carroll, C., Merton, L., & Burger, P. (2000). Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Australian Journal of Soil Research, 38(2), 313-328. DOI
Field, D. J., Minasny, B., & Gaggin, M. (2006). Modelling aggregate liberation and dispersion of three soil types exposed to ultrasonic agitation. Australian Journal of Soil Research, 44, 497-502. https://doi.org/10.1071/SR05127 DOI
Fulajtár, E. (2006). Fyzikálne vlastnoti pôdy. Bratislava: VÚPOP.
Halder, M., Islam, M. U., Liu, S., Guo, Y., Zhang, Y., & Peng, X. (2024). Organic materials quality to control soil aggregation: A meta-analysis. Journal of Soil Science and Plant Nutrition, 24, 1857-1870. https://doi.org/10.1007/s42729-024-01815-9 DOI
Hreško, J., Pucherová, Z., & Baláž, I. (2006). Krajina Nitry a jej okolia. Nitra: Univerzita Konštantina Filozofa.
Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., … & Lištjak, J. (2011). Jednotné Pracovné Postupy Rozborov Pôd. Bratislava: VÚPOP.
Itami, K., & Kyuma, K. (1995). Dispersion behavior of soils from reclaimed lands with poor soil physical properties and their characteristics with special reference to clay dispersion. Soil Science and Plant Nutrition, 41(1), 45-54. https://doi.org/10.1080/00380768.1995.10419557 DOI
IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.
Jankowski, M., Šimanský, V., Markiewicz, M., Pilichowska, A., & Michalak, J. (2018). Differently used soils of the Tribeč mountain range and Nitra valley slope. In M. Świtoniak & P. Charzyński (Eds.), Soil Sequences Atlas IV (pp. 139-158). Toruń: Nicolaus Copernicus University.
Jonczak, J., Oktaba, L., Pawłowicz, E., Chojnacka, A., Regulska, E., Słowińska, S., … & Wójcik-Gront, E. (2022). Soil organic matter transformation influenced by silver birch (Betula pendula Roth) succession on abandoned from agricultural production sandy soil. European Journal of Forest Research, 142(2), 367-379. https://doi.org/10.1007/s10342-022-01527-8 DOI
Kruczkowska, B., Jonczak, J., Kondras, M., Oktaba, L., Pawłowicz, E., Chojnacka, A., Jankiewicz, U., Oktaba, J., Olejniczak, I., Słowińska, S., & Regulska, E. (2023). The use of trophic status indicator as a tool to assess the potential of birch-afforested soils to provide ecosystem services. Agriculture, Ecosystems & Environment, 348. https://doi.org/10.1016/j.agee.2023.108434 DOI
Lazcano, C., Decock, C., & Wilson, S. G. (2020). Defining and managing for healthy vineyard soils: intersections with the concept of terroir. Frontiers of Environmental Science, 8(68). https://doi.org/10.3389/fenvs.2020.00068 DOI
Le Bissonais, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47(4), 425-437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x DOI
López-Vicente, M., Calvo-Seas, E., Álvarez, S., & Cerdà, A. (2020). Effectiveness of cover crops to reduce loss of soil organic matter in a rainfed vineyard. Land, 9(7), 230. https://doi.org/10.3390/land9070230 DOI
Lyle, W. M., & Tomlinson, D. P. (1999). Effects of soil erosion and compaction on soil structure and fertility. Soil Science Society of America Journal, 63(6), 1760-1765.
Oades, J. M., & Waters, A. G. (1991). Aggregate hierarchy in soil. Australian Journal of Soil Research, 29(5), 815-828. https://doi.org/10.1071/SR9910815 DOI
Onweremadu, E. U., Onyia, V. N., & Anikwe, M. A. N. (2007). Carbon and nitrogen distribution in waterstable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria. Soil & Tillage Research, 97(2), 195-206. https://doi.org/10.1016/j.still.2007.09.011 DOI
Poesen, J., & Hooke, J. M. (1997). Erosion, sediment transport and sedimentation. Catena, 28(3-4), 329-359.
Regulska, E., Affek, A. N., Kondras, M., Słowińska, S., Jonczak, J., Chojnacka, A., ... & Kruczkowska, B. (2024). Earthworm response to silver birch afforestation: Implications for soil biodiversity and ecosystem services. Forest Ecology and Management, 563, 121971. https://doi.org/10.1016/j.foreco.2024.121971 DOI
Repa, Š., & Šiška, B. (2004). Klimatická charakteristika roka 2003 v Nitre, Nitra: SPU.
Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008 DOI
Słowińska-Jurkiewicz, A., Bryk, M., Kołodziej, B., & Jaroszuk-Sierocińska, M. (2012). Macrostructure of soils in Poland. Lublin: AWR Magic.
Šimanský, V. (2014). Short communication to the determination of soil structure. Acta Fytotechnica et Zootechnica, 17(1), 1-5. https://doi.org/10.15414/afz.2014.17.01.01-05 DOI
Šimanský, V., & Bajčan, D. (2014). The stability of soil aggregates and their ability of carbon sequestration. Soil and Water Research, 9, 111-118. https://doi.org/10.17221/106/2013-swr DOI
Šimanský, V., Juriga, M., Golian, M., Šlosar, M., & Provazník, M. (2021). Soil structure is a significant indirect factor affecting crop yields. Acta Fytotechnica et Zootechnica, 24(2), 129-136. https://doi.org/10.15414/afz.2021.24.02.129-136 DOI
Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł., & Stępień, W. (2019). How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma, 342, 75-84. https://doi.org/10.1016/j.geoderma.2019.02.020 DOI
Šimanský, V., Wójcik-Gront, E., Rustowska, B., Juriga, M., Chlpík, J., & Macák, M. (2023). Reducing machine movement intensity in the field improves soil structure. Acta Fytotechnica et Zootechnica, 26(1), 93-101. https://doi.org/10.15414/afz.2023.26.01.93-101 DOI
Tate, R. L. (1995). Soil microbiology. New York: John Wiley & Sons.
Wang, B., Brewer, P. E., Shugart, H. H., Lerdau, M. T., & Allison, S. D. (2019). Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases - A concept. Global Change Biology, 25(2), 373-385. https://doi.org/10.1111/gcb.14515 DOI
Wang, X., Zhou, M., Yue, H., Li, S., Lin, G., Zhang, Y., … & Lin, J. (2024). Effects of different artificial vegetation restoration modes on soil microbial community structure in the soil erosion area of southern China. Catena, 237. https://doi.org/10.1016/j.catena.2024.107803 DOI
Young, R. N., & Warkentin, B. P. (1975). Soil properties and behavior. Developments in Geotechnical Engineering, 5. Amsterdam: Oxford, New York. DOI
Zaujec, A., & Šimanský, V. (2008). Pôdna štruktúra a organická hmota v černozemiach SR. In Pôda v modernej informačnej spoločnosti [CD-ROM] (pp. 780-788). Bratislava: VÚPOP.
Zhou, S., Li, P., & Zhang, Y. (2024). Factors influencing and changes in the organic carbon pattern on slope surfaces induced by soil erosion. Soil & Tillage Research, 238. https://doi.org/10.1016/j.still.2024.106001 DOI

Czasopismo/Seria/cykl:

Geographia Polonica

Tom:

98

Zeszyt:

1

Strona pocz.:

97

Strona końc.:

107

Szczegółowy typ zasobu:

Artykuł

Identyfikator zasobu:

oai:rcin.org.pl:244715 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0294

Źródło:

CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; kliknij tutaj, żeby przejść

Język:

eng

Język streszczenia:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa 4.0

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R

Dostęp:

Otwarty

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji