• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Analiza wysokości opadów maksymalnych z modelu PMAXTP i ich zastosowanie do weryfikacji działania miejskiego systemu odwodnienia = Analysis of maximum rainfall amounts from the PMAXTP model, and their application in verifying the performance of an urban drainage system

Subtitle:

Przegląd Geograficzny T. 96 z. 4 (2024)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

Prawidłowe wyznaczenie wielkości opadu deszczowego na obszarze zlewni, w kontekście czasu jego trwania i prawdopodobieństwa przewyższenia, stanowi podstawę projektowania, weryfikacji i eksploatacji systemów odwodnieniowych (kanalizacyjnych) w miastach. Opracowanie i wdrożenie przez IMGW-PIB w 2022 r. modeli opadowych PMAXTP, obejmujących swoim zasięgiem całą Polskę, umożliwia bezpłatny dostęp do aktualnych i wiarygodnych informacji o lokalnych wysokościach (natężeniach) opadów maksymalnych. W pracy przedstawiono wyniki analiz, które obejmowały porównanie wysokości opadów o określonych charakterystykach (czasach trwania w zakresie 54320 min oraz prawdopodobieństwach 250%), wyznaczonych z modelu PMAXTP dla stacji meteorologicznej Warszawa-Bielany, względem korespondujących wielkości z tradycyjnie dotychczas stosowanych modeli Błaszczyka i Bogdanowicz-Stachý. Przeprowadzone analizy obejmowały również weryfikację przestrzennej zmienności opadów z modeli PMAXTP oraz działania systemu kanalizacji deszczowej na obszarze Lotniska Chopina. Stwierdzono m.in., że aktualne wysokości (kwantyle) opadów z modelu PMAXTP charakteryzują się przeważnie niższymi wartościami w porównaniu do adekwatnych danych z historycznego modelu Bogdanowicz-Stachý. Wskazano na znaczące różnice w wielkościach opadów z modeli PMAXTP dla stacji pomiarowych Warszawa-Bielany i Świder oddalonych od siebie o ok. 27 km. W wyniku hydrodynamicznych symulacji w modelu SWMM ustalono, że przyjęte modele opadowe mają znaczący wpływ na wartości przepływu wód w badanej zlewni. Uzyskano informacje o występowaniu przeciążeń dla określonych kanałów deszczowych i wylewów na obszarze Lotniska Chopina.

References:

Barszcz, M. (2017). Zastosowanie modelu SWMM do obliczenia przepływów i ich redukcji przez zbiorniki na obszarze Lotniska Chopina. Acta Scientarium Polonorum Architectura, 16(1), 7991. https://doi.org/10.22630/ASPA.2017.16.1.08 DOI
Barszcz, M. (2022). Ocena przydatności disdrometru laserowego i radaru meteorologicznego do szacowania wielkości opadów deszczu. Przegląd Geograficzny, 94(4), 451470. https://doi.org/10.7163/PrzG.2022.4.3 DOI
Barszcz, M. (2024). Modelowanie hydrodynamiczne dużego systemu kanalizacji deszczowej - na przykładzie Lotniska Chopina w Warszawie. Gaz, Woda i Technika Sanitarna, 2, 1824. https://doi.org/10.15199/17.2024.2.3 DOI
Berne, A., Delrieu, G., Creutin, J.D., & Obled, C. (2004). Temporal and spatial resolution of rainfall measurements required for urban hydrology. Journal of Hydrology, 299 (34), 166179. https://doi.org/10.1016/j.jhydrol.2004.08.002 DOI
Bisht, D.S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., & Panda, A. (2016). Modelling urban floods and drainage using SWMM and MIKE URBAN: a case study. Natural Hazards, 84, 749776. https://doi.org/10.1007/s11069-016-2455-1 DOI
Błaszczyk, W., Stamatello, H., & Błaszczyk, P. (1983). Kanalizacja. Warszawa: Wydawnictwo Arkady.
Bogdanowicz, E., & Stachý, J. (1998). Maksymalne opady deszczu w Polsce - charakterystyki projektowe. Materiały badawcze IMGW. Seria Hydrologia i Oceanologia, 23. Warszawa: IMGW.
Kaźmierczak, B., Kotowski, A., & Dancewicz, A. (2012). Weryfikacja metod wymiarowania kanalizacji deszczowej za pomocą modelu hydrodynamicznego (SWMM) w warunkach wrocławskich. Ochrona Środowiska, 34(2), 2531.
Kotowski, A. (2011). Podstawy bezpiecznego wymiarowania odwodnień terenów. Lublin: Wydawnictwo Seidel-Przywecki.
Kotowski, A., Kaźmierczak, B., & Dancewicz, A. (2010). Modelowanie opadów do wymiarowania kanalizacji. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN.
Kotowski, A., Kaźmierczak, B., & Licznar, P. (2018). Wybrane problemy projektowania i modelowania odwodnienia terenów. Instal, 5, 3944.
Kotowski, A., Kaźmierczak, B., Wartalski, A., & Cieślik, W. (2013). Modelowanie hydrodynamiczne kanalizacji deszczowej na osiedlu Rakowiec we Wrocławiu. Gaz, Woda i Technika Sanitarna, 3, 113119. https://doi.org/10.15199/17.2018.7.4 DOI
Licznar, P., Siekanowicz-Grochowina, K., Oktawiec, M., Kotowski, A., & Burszta-Adamiak, E. (2018). Empiryczna weryfikacja formuły Błaszczyka do obliczania wartości natężenia deszczu miarodajnego. Ochrona Środowiska, 40(2), 1722.
Licznar, P., & Zaleski, J. (2020) (red.). Metodyka opracowania polskiego atlasu natężeń deszczów (PANDa). Warszawa: IMGW-PIB.
Ozga-Zieliński, B. (red.). (2022). Modele probabilistyczne opadów maksymalnych o określonym czasie trwania i prawdopodobieństwie przewyższenia - projekt PMAXTP. Warszawa: IMGW-PIB.
PANDa. (2019). Polski Atlas Natężeń Deszczów. Pobrane z: https://atlaspanda.pl (01.03.2019).
PMAXTP. (2022). Model probabilistyczny opadów Precipitation MAXimum Time (duration) Probability. Warszawa: IMGW-PIB. Pobrane z: https://klimat.imgw.pl/opady-maksymalne (26.03.2024).
PN-EN 752:2017. (2017). Drain and sewer systems outside buildings - Sewer systems management (Zewnętrzne systemy odwadniające i kanalizacyjne - Zarządzanie systemem kanalizacyjnym). Warszawa: PKN.
Pozwolenie wodnoprawne. (2017). Pozwolenie wodnoprawne na wprowadzanie wód opadowych i roztopowych z terenu Lotniska im. F. Chopina do Potoku Służewieckiego (decyzja nr 119/17/ PZ.W). Marszałek województwa mazowieckiego.
Rossman, L., & Simon, M. (2022). Storm Water Management Model. User's Manual Version 5.2. Cincinnati: Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency.
SWMM. (2023). Storm Water Management Model. U.S. Environmental Protection Agency. Pobrane z: https://www.epa.gov/water-research/storm-water-management-model-swmm (07.08.2023).
Tuszyńska, I. (2015). Rozwój meteorologii radarowej w Polsce. Warszawa: IMGW-PIB.
Wawrzyniak, M., & Wdowikowski, M. (2023). Modelowanie intensywnych opadów deszczu w zlewni miejskiej na przykładzie Szczecina. Gaz, Woda i Technika Sanitarna, 0708, 2230. https://doi.org/10.15199/17.2023.7.4 DOI
Wdowikowski, M., Wartalska, M., Kaźmierczak, B., & Kotowski, A. (2023). Zasady formułowania probabilistycznych modeli deszczów maksymalnych. Gaz, Woda i Technika Sanitarna, 1, 2229. https://doi.org/10.15199/17.2023.1.4 DOI
Węglarczyk, S. (2013). O poprawności wzorów Błaszczyka na obliczanie opadów miarodajnych. Infrastruktura i Ekologia Terenów Wiejskich, 3(4), 6376.
Zawilski, M., & Sakson, G. (2011). Modelowanie spływu ścieków opadowych ze zlewni miejskiej przy wykorzystaniu programu SWMM. Część II. Weryfikacja modelu. Gaz, Woda i Technika Sanitarna, 9, 321332.

Relation:

Przegląd Geograficzny

Volume:

96

Issue:

4

Start page:

473

End page:

494

Detailed Resource Type:

Artykuł

Format:

application/octet-stream

Resource Identifier:

oai:rcin.org.pl:243834 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2024.4.4

Source:

CBGiOŚ. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Licencja Creative Commons Uznanie autorstwa 4.0

Terms of use:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitizing institution:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Original in:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Projects co-financed by:

Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R ; Unia Europejska. Europejski Fundusz Rozwoju Regionalnego

Access:

Otwarty

×

Citation

Citation style:

This page uses 'cookies'. More information