• Wyszukaj w całym Repozytorium
  • Piśmiennictwo i mapy
  • Archeologia
  • Baza Młynów
  • Nauki przyrodnicze

Szukaj w Repozytorium

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Piśmiennictwo i mapy

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Archeologia

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Baza Młynów

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Nauki przyrodnicze

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Projekty RCIN i OZwRCIN

Obiekt

Tytuł: Potential rockfalls in the periglacial zone of the Polish High Tatras: Extent and kinematics

Twórca:

Kajdas, Joanna : Autor Affiliation ORCID ; Gądek, Bogdan : Autor Affiliation ORCID

Data wydania/powstania:

2024

Typ zasobu:

Tekst

Inny tytuł:

Geographia Polonica Vol. 97 No. 2 (2024)

Wydawca:

IGiPZ PAN

Miejsce wydania:

Warszawa

Opis:

24 cm

Abstrakt:

The study offers the first attempt to combine the identification of rock cliffs particularly prone to rockfall with estimates of the potential trajectories and kinetic energies of the material released in this way in the Tatra Mountains. The results obtained suggest that the potential energy of the relief and the initial size and shape of the rock fragments released have not fundamentally changed since the complete disappearance of the glaciers. It was also found that the degree to which glacial and periglacial landforms are buried by such material depends not just on the location, number and size of the release areas or rockfall frequency but also on the kinetic energy of the rock material released. The rockfalls observed in recent years and those perceived as potential ones are linked not so much to permafrost degradation as to the relief, geology and weather conditions.

Bibliografia:

André, M. F. (1996). Rock weathering rates in arctic and subarctic environments (Abisko Mts., Swedish Lappland). Zeitschrift fur Geomorphologie, 40(4), 499-517. https://doi.org/10.1127/zfg/40/1996/499 DOI
Bartelt, P., Buehler, Y., Christen, M., Dreier, L., Gerber, W., Glover, J., … & Schweizer, A. (2022). A numerical model for rockfall in research and practice User Manual v. 1.7 -Rockfall. Zurich: Swiss Federal Institute of Technology.
Blahůt, J., Klimeš, J., & Vařilová, Z. (2013). Quantitative rockfall hazard and risk analysis in selected municipalities of the České Švýcarsko National Park, Northwestern Czechia. Geografie-Sbornik CGS, 118(3), 205-220. https://doi.org/10.37040/geografie2013118030205 DOI
Buczek, K., & Górnik, M. (2020). Evaluation of tectonic activity using morphometric indices: case study of the Tatra Mts. (Western Carpathians, Poland). Environmental Earth Sciences, 79(8), 176. https://doi.org/10.1007/s12665-020-08912-9 DOI
Carlà, T., Nolesini, T., Solari, L., Rivolta, C., Dei Cas, L., & Casagli, N. (2019). Rockfall forecasting and risk management along a major transportation corridor in the Alps through ground-based radar interferometry. Landslides, 16(8), 1425-1435. https://doi.org/10.1007/s10346-019-01190-y DOI
Caviezel, A., Lu, G., Demmel, S. E., Ringenbach, A., Bühler, Y., Christen, M., & Bartelt, P. (2019). RAMMS:: ROCKFALL-a modern 3-dimensional simulation tool calibrated on real world data. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2019). ARMA.
Caviezel, A., Ringenbach, A., Demmel, S. E., Dinneen, C. E., Krebs, N., Bühler, Y., … & Bartelt, P. (2021). The relevance of rock shape over mass - implications for rockfall hazard assessments. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25794-y DOI
Choiński, A., & Strzelczak, A. (2011). Bathymetric measurements of Morskie Oko Lake. Limnological Review, 11(2), 89-93. https://doi.org/10.2478/v10194-011-0030-4 DOI
Choiński, A., & Zieliński, A. (2023). Changes of the surface area of Morskie Oko and Wielki Staw in the Tatra Mountains. Quaestiones Geographicae, 42(1), 15-24. https://doi.org/10.14746/quageo-2023-0002 DOI
Columbu, S., Cruciani, G., Fancello, D., Franceschelli, M., Musumeci, G. (2015). Petrophysical properties of a granite-protomylonite-ultramylonite sequence: Insight from the Monte Grighini shear zone, central Sardinia, Italy. European Journal of Mineralogy, 27(4), 471-486. https://doi.org/10.1127/ejm/2015/0027-2447 DOI
D'Amato, J., Hantz, D., Guerin, A., Jaboyedoff, M., Baillet, L., & Mariscal, A. (2016). Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Natural Hazards and Earth System Sciences, 16(3), 719-735. https://doi.org/10.5194/nhess-16-719-2016 DOI
Dixon, J. C., & Thorn, C. E. (2005). Chemical weathering and landscape development in mid-latitude alpine environments. Geomorphology, 67(1-2), 127-145. https://doi.org/10.1016/j.geomorph.2004.07.009 DOI
Dobiński, W. (2005). Permafrost of the Carpathian and Balkan Mountains, eastern and southeastern Europe. Permafrost and Periglacial Processes, 16(4), 395-398. https://doi.org/10.1002/ppp.524 DOI
Draebing, D. (2021). Identification of rock and fracture kinematics in high Alpine rockwalls under the influence of altitude. Earth Surface Dynamics, 9(4), 977-994. https://doi.org/10.5194/esurf-9-977-2021 DOI
Draebing, D., & Krautblatter, M. (2019). The efficacy of frost weathering processes in alpine rockwalls. Geophysical Research Letters, 46(12), 6516-6524. https://doi.org/10.1029/2019gl081981 DOI
Eppes, M. C., & Keanini, R. (2017). Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Reviews of Geophysics, 55(2), 470-508. https://doi.org/10.1002/2017RG000557 DOI
Evans, S. G., & Hungr, O. (1993). The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30(4), 620-636. https://doi.org/10.1139/t93-054 DOI
Fanos, A. M., & Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: A critical review. Earth Systems and Environment, 2(2), 163-182. https://doi.org/10.1007/s41748-018-0046-x DOI
Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., & Haeberli, W. (2012). On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Natural Hazards and Earth System Science, 12(1), 241-254. https://doi.org/10.5194/nhess-12-241-2012 DOI
Fityus, S. G., Giacomini, A., & Buzzi, O. (2013). The significance of geology for the morphology of potentially unstable rocks. Engineering Geology, 162, 43-52. https://doi.org/10.1016/j.enggeo.2013.05.007 DOI
Gądek, B., Grabiec, M., & Kędzia, S. (2013). Rzeźba i wybrane elementy klimatu najwyżej położonych cyrków polodowcowych na przykładzie Koziej Dolinki. In Z., Rączkowska, A., & Kotarba (Eds.), Dolina Suchej Wody w Tatrach. Środowisko i jego współczesne przemiany, Prace Geograficzne, 239, 49-66. Warszawa: Instytut Geografii i Przestrzennego Zagospodarowania PAN.
Gądek, B., Grabiec, M., Kędzia, S., & Rączkowska, Z. (2016). Reflection of climate changes in the structure and morphodynamics of talus slopes (the Tatra Mountains, Poland). Geomorphology, 263, 39-49. https://doi.org/10.1016/j.geomorph.2016.03.024 DOI
Gądek, B., Kajdas, J., Krawiec, K. (2023). Contemporary degradation of steep rock slopes in the periglacial zone of the Tatra Mts., Poland. Geographia Polonica, 96(1), 53-68. https://doi.org/10.7163/GPol.0245 DOI
Gądek, B., & Kędzia, S. (2008). Winter ground surface temperature regimes in the zone of sporadic discontinuous permafrost, Tatra Mountains (Poland and Slovakia), Permafrost and Periglacial Process, 19(3), 315-321. https://doi.org/10.1002/ppp.623 DOI
Gądek, B., & Leszkiewicz, J. (2012). Impact of climate warming on the ground surface temperature in the sporadic permafrost zone of the Tatra Mountains, Poland and Slovakia. Cold Regions Science and Technology, 79-80, 75-83. https://doi.org/10.1016/j.coldregions.2012.03.006 DOI
Gądek, B., Rączkowska, Z., & Żogała, B. (2009). Debris slope morphodynamics as a permafrost indicator in zone of sporadic permafrost, High Tatras, Slovakia. Zeitschrift für Geomorphologie, Supplementary Issues, 53(2), 79-100. https://doi.org/10.1127/0372-8854/2009/0053S3-0079 DOI
Gądek, B., & Szypuła, B. (2015). Contemporary cryosphere. Sheet V.1, Map 3, 1: 250,000. In K., Dąbrowska, & M., Guzik (Eds.), Atlas of the Tatra Mountains: Abiotic Nature, Zakopane: Wydawnictwa Tatrzańskiego Parku Narodowego.
Glover, J. (2015). Rock-shape and its role in rockfall dynamics. Doctoral thesis, Durham University.
Gruber, S. (2012). Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere, 6(1), 221-233. https://doi.org/10.5194/tc-6-221-2012
Gruber, S., & Haeberli, W. (2007). Permafrost in steep bedrock and its temperature-related destabilization following climate change. Journal of Geophysical Research: Earth Surface, 112(2). https://doi.org/10.1029/2006JF000547 DOI
Kajdas, J., Gądek, B., Rączkowska, Z., & Cebulski, J. (2024). Triggers of present-day rockfalls in the zone of sporadic permafrost in non-glaciated mountain region: the case study of Turnia Kurczaba (the Tatra Mts., Poland). Geology, Geophysics and Environment, 50(1), 23-38. https://doi.org/10.7494/geol.2024.50.1.23 DOI
Klimaszewski, M. (1988). Rzeźba Tatr Polskich. Warszawa: Państwowe Wydawnictwo Naukowe.
Kłapyta, P., Zasadni, J., & Gądek, B. (2024). Glacial landscape evolution during the Holocene in the Tatra Mountains. In D., Palacios, P. D., Hughes, V., Jomelli, & L. M., Tanarro (Eds.), European Glacial Landscapes: The Holocene (pp. 315-330), Elsevier. https://doi.org/10.1016/B978-0-323-99712-6.00013-1 DOI
Knoflach, B., Tussetschläger, H., Sailer, R., Meißl, G., & Stötter, J. (2021). High mountain rockfall dynamics: rockfall activity and runout assessment under the aspect of a changing cryosphere. Geografiska Annaler, Series A: Physical Geography, 103(1), 83-102. https://doi.org/10.1080/04353676.2020.1864947 DOI
Kotarba, A., Kaszowski, L., & Krzemień, K. (1987). High-mountain denudational system of the Polish Tatra Mountains. Geographical Studies, 3 (Special Issue), Wrocław: Polish Academy of Sciences, Institute of Geography and Spatial Organization.
Kotarba, A., & Pech, P. (2002). The recent evolution of talus slopes in the High Tatra Mountains (with the Pańszczyca Valley as example). Studia Geomorphologica Carpatho-Balcanica, 36, 69-76.
Leine, R. I., Schweizer, A., Christen, M., Glover, J., Bartelt, P., & Gerber, W. (2014). Simulation of rockfall trajectories with consideration of rock shape. Multibody System Dynamics, 32(2), 241-271. https://doi.org/10.1007/s11044-013-9393-4 DOI
Lubera, E. (2016). Wietrzenie mrozowe i odpadanie ze ścian skalnych w obszarze wysokogórskim, na przykładzie Tatr Zachodnich. Manuscript of the PhD thesis, Archive of IGiGP UJ, Cracow.
Luckman, B. H. (2013). Processes, Transport, Deposition, and Landforms: Rockfall. In F. J. Shroder (Ed.), Treatise on Geomorphology (pp. 174-182). San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00162-7 DOI
Lukniš, M. (1973). Reliéf Vysokých Tatier a ich predpolia. Bratislava: Vydavatelstvo Slovenskej Akadémie vied.
Łupikasza, E., & Szypuła, B. (2019). Vertical climatic belts in the Tatra Mountains in the light of current climate change. Theoretical and Applied Climatology, 136(1-2), 249-264. https://doi.org/10.1007/s00704-018-2489-2 DOI
Mair, D., Lechmann, A,. Delunel, R., Yeşilyurt, S., Tikhomirov, D., Vockenhuber, Ch., … & Schlunegger, F. (2020). The role of frost cracking in local denudation of steep Alpine headwalls over millennia (Mt. Eiger, Switzerland). Earth Surface Dynamics, 8(3), 637-659. https://doi.org/10.5194/esurf-2019-56 DOI
Matsuoka, N. (2008). Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994-2006) observations. Geomorphology, 99(1-4), 353-368. https://doi.org/10.1016/j.geomorph.2007.11.013 DOI
Mościcki, J. W., & Kedzia, S. (2001). Investigation of mountain permafrost in the Kozia Dolinka valley, Tatra Mountains, Poland. Norsk Geografisk Tidsskrift, 55(4), 235-240. https://doi.org/10.1080/00291950152746586 DOI
Niedźwiedź, T. (1992). Climate of the Tatra Mountains. Mountain Research & Development, 12(2), 131-146. https://doi.org/10.2307/3673787 DOI
Pánek, T., Engel, Z., Mentlík, P., Braucherd, R., Břežnýa, M., Škarpicha, V., Zonderva, A. (2016). Cosmogenic age constraints on post-LGM catastrophic rock slope failures in the Tatra Mountains (Western Carpathians). Catena, 138, 52-67. https://doi.org/10.1016/j.catena.2015.11.005 DOI
Piotrowska, K. (1997). Cios, spękania ciosowe i uskoki w trzonie granitoidowym polskich Tatr Wysokich. Przegląd Geologiczny, 45(9), 904-907.
Piotrowska, K., Danel, W., Michalik, M., Rączkowski, W., & Borecka, A. (2015). Szczegółowa Mapa Geologiczna Tatr w skali 1:10,000, arkusz Mięguszowiecki Szczyt: M-34-101-A-c-3. Warszawa: Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy.
Ravanel, L., Magnin. F. & Deline. P. (2017). Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Science of The Total Environment, 609, 132-143. https://doi.org/10.1016/j.scitotenv.2017.07.055 DOI
Rączkowska, Z. (2007). Współczesna rzeźba peryglacjalna wysokich gór Europy. Prace Geograficzne, 212, Warszawa: IGiPZ PAN.
Rączkowska, Z., & Cebulski, J. (2022). Quantitative assessment of the complexity of talus slope morphodynamics using multi-temporal data from terrestrial laser scanning (Tatra Mts., Poland). Catena, 209(1), 105792. https://doi.org/10.1016/j.catena.2021.105792 DOI
Rączkowska, Z., Cebulski, J., Rączkowski, W., Wojciechowski, T., & Perski, Z. (2017/2018). Using TLS for monitoring talus slope morphodynamics in the Tatra Mts. Studia Geomorphologica Carpatho-Balcanica, 51-52, 179-198.
Rączkowski, W., Boltižiar, M., & Rączkowska, Z. (2015). Relief. Sheet v.1, Map 1, 1:100 000. In K., Dąbrowska, & M., Guzik (Eds.), Atlas of the Tatra Mountains: Abiotic Nature. Zakopane: Wydawnictwa Tatrzańskiego Parku Narodowego.
Romeo, S., Di Matteo, L., Melelli, L., Cencetti, C., Dragoni, W., & Fredduzzi, A. (2017). Seismic-induced rockfalls and landslide dam following the October 30, 2016 earthquake in Central Italy. Landslides, 14(4), 1457-1465. https://doi.org/10.1007/s10346-017-0841-8 DOI
Savi, S., Comiti, F., & Strecker, M. R. (2020). Pronounced increase in slope instability linked to global warming: A case study from the eastern European Alps. Earth Surface Processes and Landforms, 46(7), 1328-1347. https://doi.org/10.1002/esp.5100 DOI
Senderak, K., Kondracka, M., & Gądek, B. (2019). Postglacial talus slope development imaged by the ERT method: comparison of slopes from SW Spitsbergen, Norway and Tatra Mountains, Poland. Open Geosciences, 11(1), 1084-1097. https://doi.org/10.1515/geo-2019-0084 DOI
Senderak, K., Kondracka, M., & Gądek, B. (2020). Processes controlling the development of talus slopes in SW Spitsbergen: The role of deglaciation and periglacial conditions. Land Degradation and Development, 32(1), 208-223. https://doi.org/10.1002/ldr.3716 DOI
Służba Topograficzna Wojska Polskiego. (1992). Tatry Polskie. Mapa topograficzna, 1:10,000, Sheet 14 (Morskie Oko). Warszawa: Wydawnictwo Czasopisma Wojskowe.
Sun, J., Wang, X., Guo, S., Liu, H., Zou, Y., Yao, X., … & Qi, S. (2023). Potential rockfall source identification and hazard assessment in high mountains (Maoyaba Basin) of the Tibetan Plateau. Remote Sens, 15(13), 3273. https://doi.org/10.3390/rs15133273 DOI
Szczygieł, J., Gradziński, M., Grasemann, B., Hercman, H., Wróblewski, W., Bella, P., … & Sala, P. (2024). Tectonics or rebound: Pleistocene fault reactivation in the highest mountains of the Carpathians. Tectonophysics, 871, 230171. https://doi.org/10.1016/j.tecto.2023.230171 DOI
Šilhán, K., & Tichavský, R. (2016). Recent increase in debris flow activity in the Tatras Mountains: Results of a regional dendrogeomorphic reconstruction. Catena, 143, 221-231. https://doi.org/10.1016/j.catena.2016.04.015 DOI
Ustrnul, Z., Walawender, E., Czekierda, D., Lapin, M., & Mikulova, K. (2015). Precipitation and snow cover. Sheet II.3, Maps 1 and 5, 1:250,000. In K., Dąbrowska, & M., Guzik, (Eds.), Atlas of the Tatra Mountains: Abiotic Nature. Zakopane: Wydawnictwa Tatrzańskiego Parku Narodowego.
Zasadni, J. (2015). Dolina Suchej Wody Valley. Sheet V.6, Map 2, 1:20 000. In K., Dąbrowska,. & M., Guzik (Eds.), Atlas of the Tatra Mountains: Abiotic Nature, Wydawnictwa Tatrzańskiego Parku Narodowego, Zakopane.
Zasadni, J., & Kłapyta, P. (2014). The Tatra Mountains during the Last Glacial Maximum. Journal of Maps, 10(3), 440-456. https://doi.org/10.1080/17445647.2014.885854 DOI
Zasadni, J., Kłapyta, P., & Makos, M. (2023). The evolution of glacial landforms in the Tatra Mountains during the deglaciation. In D., Palacios, P. D., Hughes, M., Jose, J. M., García Ruiz, N., & de Andrés. (Eds), European Glacial Landscapes: The Last Deglaciation (pp. 157-164). Chapter 18. Elsevier. https://doi.org/10.1016/B978-0-323-91899-2.00042-5 DOI
Zasadni, J., Kłapyta, P., Tołoczko-Pasek, A., & Makos, M. (2023). The evolution of glacial landforms in the Tatra Mountains during the Younger Dryas. In D. Palacios, P. D. Hughes, M. Jose, J. M. García Ruiz, & N. de Andrés, (Eds.), European Glacial Landscapes: The Last Deglaciation (509-515). Chapter 53, Elsevier. https://doi.org/10.1016/B978-0-323-91899-2.00009-7 DOI
Zhang, W., Zhao, X., Pan, X., Wei, M., Yan, J., & Chen, J. (2022). Characterization of high and steep slopes and 3D rockfall statistical kinematic analysis for Kangyuqu area, China. Engineering Geology, 308. https://doi.org/10.1016/j.enggeo.2022.106807 DOI
Zielonka, A., & Wrońska-Wałach, D. (2019). Can we distinguish meteorological conditions associated with rockfall activity using dendrochronological analysis? - An example from the Tatra Mountains (Southern Poland). Science of Total Environment, 662, 422-433. https://doi.org/10.1016/j.scitotenv.2019.01.243 DOI

Czasopismo/Seria/cykl:

Geographia Polonica

Tom:

97

Zeszyt:

2

Strona pocz.:

189

Strona końc.:

204

Szczegółowy typ zasobu:

Artykuł

Identyfikator zasobu:

oai:rcin.org.pl:241524 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0275

Źródło:

CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; kliknij tutaj, żeby przejść

Język:

eng

Język streszczenia:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa 4.0

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R

Dostęp:

Otwarty

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji