• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Contemporary degradation of steep rock slopes in the periglacial zone of the Tatra Mts., Poland

Subtitle:

Geographia Polonica Vol. 96 No. 1 (2023)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

This study presents the results of the first large-area monitoring of steep slopes in the Tatra Mountains. In the research, we used terrestrial laser scanning methods and GIS tools. We also performed crack density measurements. The results obtained demonstrate that the rate of change of slopes under the influence of weathering and rockfall processes is very variable both in time and space. The rate of retreat of 4 steep adjacent granitoid slopes over the same period ranged from 0.00013 ma-1 to 0.004 ma-1. The spatial variation in the number and size of cavities was related primarily to the cracks density.

References:

André, M. F. (1996). Rock weathering rates in arctic and subarctic environments (Abisko Mts., Swedish Lappland). Zeitschrift fur Geomorphologie, 40(4), 499-517. https://doi.org/10.1127/zfg/40/1996/499 DOI
Ballantyne, C. K., & Benn, D. I. (1996). Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. In M. G. Anderson, S. M. Brooks (Eds.), Advances in hillslope processes, 2 (pp. 1173-1195). New York: John Wiley & Sons.
Bechtt, M. (1995). Slope erosion processes in the Alps. In O. Slaymaker (Ed.), Steepland Geomorphology (pp. 45-61). Chichester: John Wiley & Sons.
Bland, W. J., & Rolls, D. (1998). Weathering: An introduction to the scientific principles. Oxford University Press. https://doi.org/10.4324/9781315824918 DOI
Błaszczyk, M., Laska, M., Sivertsen, A., & Jawak, S. D. (2022). Combined use of aerial photogrammetry and terrestrial laser scanning for detecting geomorphological changes in Hornsund, Svalbard. Remote Sensing, 14(3), 601. https://doi.org/10.3390/rs14030601 DOI
Choiński, A., & Pociask-Karteczka, J. (2014). Morskie Oko - przyroda i człowiek. Zakopane: Wydawnictwo Tatrzańskiego Parku Narodowego.
Collins, B. D., & Stock, G. M. (2016). Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nature Geoscience, 9, 395-400. https://doi.org/10.1038/ngeo2686 DOI
Coutard, J. P., & Francou, B. (1989). Rock temperature measurements in two alpine environments: implications for frost shattering. Arctic and Alpine Research, 21(4), 399-416. https://doi.org/10.2307/1551649 DOI
Deline, P., Chiarle, M., Curtaz, M., Kellerer-Pirklbauer, A., Lieb, G. K., Mayr, V., Mortara, G., & Ravanel, L. (2011). Rockfalls. In P. Schoeneich, M. Dall'Amico, P. Deline, & A. Zischg (Eds.), Hazards related to permafrost and to permafrost degradation (pp. 67-105). PermaNET project, state-of-the-art report 6.2. http://www.permanet-alpinespace.eu/archive/pdf/WP6_2_rockfalls.pdf
Dixon, J. C., & Thorn, C. E. (2005). Chemical weathering and landscape development in mid-latitude alpine environments. Geomorphology, 67(1-2), 127-145. https://doi.org/10.1016/j.geomorph.2004.07.009 DOI
Dobiński, W. (2005). Permafrost of the Carpathian and Balkan Mountains, eastern and southeastern Europe. Permafrost and Periglacial Processes, 16(4), 395-398. https://doi.org/10.1002/ppp.524 DOI
Draebing, D. (2021). Identification of rock and fracture kinematics in high Alpine rockwalls under the influence of altitude. Earth Surface Dynamics, 9, 977-994. https://doi.org/10.5194/esurf-9-977-2021 DOI
Draebing, D., Haberkorn, A., Krautblatter, M., Kenner, R., & Phillips, M. (2017). Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes, Steintaelli, Swiss Alps. Permafrost and Periglacial Processes, 28(1), 140-157. https://doi.org/10.1002/ppp.1921 DOI
Draebing, D., & Krautblatter, M. (2019). The efficacy of frost weathering processes in Alpine Rockwalls. Geophysical Research Letters, 46(12), 6516-6524. https://doi.org/10.1029/2019gl081981 DOI
Eppes, M. C., Hancock, G. S., Chen, X., Arey, J., Dewers, T., Huettenmoser, J., Kiessling, S., Moser, F., Tannu, N., Weiserbs, B., & Whitten, J. (2018). Rates of subcritical cracking and long-term rock erosion. Geology, 46(11), 951-954. https://doi.org/10.1130/G45256.1 DOI
Eppes, M. C., & Keanini, R. (2017). Mechanical weathering and rock erosion by climate-dependent subcritical cracking. Reviews of Geophysics, 55(2), 470-508. https://doi.org/10.1002/2017RG000557 DOI
Francou, B. (1988). L'ébolisationen Haute Mountagne (Alpes, Andes). Contribution á l'étude du systéme corniche-éboulisen milieu périglaciare. Thèse (de doctorat), C.N.R.S., Centre de géomorphologie, Paris.
Galibert, G. (1965). La haute montagne alpine: l'évolution actuelle des formes dans les hauts massifs des Alpes et dans certains reliefs de comparaison, a l'exclusion des montagnes désertiques. Toulouse: Impimerie Boisseau.
Gawęda, A., & Szopa, K. (2011). The origin of magmatic layering in the High Tatra granite, Central Western Carpathians - Implications for the formation of granitoid plutons. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 102(2), 129-144. https://doi.org/10.1017/S1755691012010146 DOI
Gądek, B. (2014). Climatic sensitivity of the non-glaciated mountains cryosphere (Tatra Mts., Poland and Slovakia). Global and Planetary Change, 121, 1-8. https://doi:10.1016/j.gloplacha.2014.07.001 DOI
Gądek, B., Grabiec, M., Kędzia, S., & Rączkowska, Z. (2016). Reflection of climate changes in the structure and morphodynamics of talus slopes (the Tatra Mountains, Poland). Geomorphology, 263, 39-49. https://doi.org/10.1016/j.geomorph.2016.03.024 DOI
Gądek, B., & Leszkiewicz, J. (2012). Impact of climate warming on the ground surface temperature in the sporadic permafrost zone of the Tatra Mountains, Poland and Slovakia. Cold Regions Science and Technology, 79-80, 75-83. https://doi.org/10.1016/j.coldregions.2012.03.006 DOI
Gądek, B., Rączkowska, Z., & Żogała, B. (2009). Debris slope morphodynamics as a permafrost indicator in zone of sporadic permafrost, high Tatras, Slovakia. Zeitschrift fur Geomorphologie, 53(Supplementary Issue 2), 79-100. https://doi.org/10.1127/0372-8854/2009/0053s3-0079 DOI
Gorczyca, E., Krzemień, K., Wrońska-Wałach, D., & Boniecki, M. (2014). Significance of extreme hydrogeomorphological events in the transformation of mountain valleys (Northern Slopes of the Western Tatra Range, Carpathian Mountains, Poland). Catena, 121, 127-141. https://doi.org/10.1016/j.catena.2014.05.004 DOI
Gruber, S. (2012). Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere, 6, 221-233. https://doi.org/10.5194/tc-6-221-2012 DOI
Haeberli, W. (2013). Mountain permafrost - research frontiers and a special long-term challenge. Cold Regions Science and Technology, 96, 71-76. https://doi.org/10.1016/j.coldregions.2013.02.004 DOI
Haeberli, W., Kääb, A., Wagner, S., Vonder Mühll, D., Geissler, P., Haas, J. N., Glatzel-Mattheier, H., & Wagenbach, D. (1999). Pollen analysis and 14C - age of moss remains recovered from a permafrost core of the active rock glacier Murtèl-Corvatsch, Swiss Alps: Geomorphological and glaciological implications. Journal of Glaciology, 45(149), 1-8. https://doi.org/10.3189/S0022143000002975 DOI
Hall, K., & Thorn, C. (2011). The historical legacy of spatial scales in freeze-thaw weathering: Misrepresentation and resulting misdirection. Geomorphology, 130(1-2), 83-90. https://doi.org/10.1016/j.geomorph.2010.10.003 DOI
Kajdas, J., Gądek, B., Rączkowska, Z., & Cebulski, J. (submitted). Topographical, geological and climatic controls of the rockfall in the Tatra Mts.: the monitoring results of the event of 22 October 2021. Landslides.
Knoflach, B., Tussetschläger, H., Sailer, R., Meißl, G., & Stötter, S. (2021). High mountain rockfall dynamics: Rockfall activity and runout assessment under the aspect of a changing cryosphere. Geografiska Annaler, Series A: Physical Geography, 103(1), 83-102. https://doi.org/10.1080/04353676.2020.1864947 DOI
Kotarba, A. (1998). Formation of high-mountain talus slopes related to debris-flow activity in the High Tatra Mountains. Permafrost and Periglacial Processes, 8(2), 191-204. https://doi.org/10.1002/(sici)1099-1530(199732)8:2<191::aid-ppp250>3.0.co;2-h DOI
Kotarba, A., Kaszowski, L., & Krzemień, K. (1987). High-mountain denudational system of the Polish Tatra Mountains. Geographical Studies, 3 (Special Issue), Wrocław: Polish Academy of Sciences, Institute of Geography and Spatial Organization.
Kotarba, A., Kłapa, M., & Rączkowska, Z. (1983). Procesy morfogenetyczne kształtujące stoki Tatr Wysokich. Dokumentacja Geograficzna 1. Wrocław: IGiPZ PAN; Zakład Narodowy im. Ossolińskich.
Kotarba, A., & Pech, P. (2002). The recent evolution of talus slopes in the High Tatra Mountains (with the Pańszczyca Valley as example). Studia Geomorphologica Carpatho-Balcanica, 36, 69-76.
Kotarba, A., Rączkowska, Z., Długosz, M., & Blotiźiar, M. (2013). Recent debris flow in the Tatra Mountains. In D. Loczy (Ed.), Geomorphological impacts of extreme weather (pp. 221-236). Springer. https://doi.org/10.1007/978-94-007-6301-2_14 DOI
Liszkowski, J., & Stochlak, J. (1976). Szczelinowatość masywów skalnych. Wydawnictwo Geologiczne.
Lubera, E. (2014). Frost weathering of selected rocks from the Tatra Mountains. Quaestiones Geographicae, 33(1), 75-88. https://doi.org/10.2478/quageo-2014-0003 DOI
Luckman, B. H. (1976). Rockfalls and rockfall inventory data: some observations from Surprise Valley, Canada, Jasper National Park. Earth Surface Processes, 1(3), 287-298. https://doi.org/10.1002/esp.3290010309 DOI
Luckman, B. H. (2008). Forty years of rockfall accumulation at the Mount Wilcox Site, Jasper National Park, Alberta. Canada. Geographia Polonica, 81(1), 79-91.
Luckman, B. H. (2013). Processes, transport, deposition, and landforms: Rockfall. In F. J. Shroder (Ed.), Treatise on Geomorphology (pp. 174-182). San Diego: Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00162-7 DOI
Łupikasza, E. B., Ignatiuk, D., Grabiec, M., Cielecka-Nowak, K., Laska, M., Jania, J., Luks, B., Uszczyk, A., & Budzik, T. (2019). The role of winter rain in the glacial system on Svalbard. Water, 11(2). https://doi.org/10.3390/w11020334 DOI
Łupikasza, E., & Szypuła, B. (2019). Vertical climatic belts in the Tatra Mountains in the light of current climate change. Theoretical and Applied Climatology, 136(1-2), 249-264. https://doi.org/10.1007/s00704-018-2489-2 DOI
Matsuoka, N. (2008). Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994-2006) observations. Geomorphology, 99(1-4), 353-368. https://doi.org/10.1016/j.geomorph.2007.11.013 DOI
Matsuoka, N., Hirakawa, K., Watanabe, T., & Moriwaki, K. (1998). Monitoring of periglacial slope processes in the Swiss Alps: the first two years of frost shattering, heave and creep. Permafrost and Periglacial Processes, 8(2), 158-177. https://doi.org/10.1002/(SICI)1099-1530(199732)8:2<155::AID-PPP248>3.0.CO;2-N DOI
Matsuoka, N., Ikeda, A., Hirakawa, A., & Watanabe, T. (2003). Contemporary periglacial processes in the Swiss Alps: Seasonal, inter-annual and long-term variation. Permafrost - Eighth International Conference Proceedings, 2, 735-740.
Matsuoka, N., & Murton, J. (2008). Frost weathering: Recent advances and future directions. Permafrost and Periglacial Processes, 19(2), 195-210. https://doi.org/10.1002/ppp.620 DOI
Matsuoka, N., & Sakai, H. (1999). Rockfall activity from an alpine cliff during thawing periods. Geomorphology, 28(3-4), 309-328. https://doi.org/10.1016/S0169-555X(98)00116-0 DOI
Mościcki, J. W., & Kędzia, S. (2001). Investigation of mountain permafrost in the Kozia Dolinka valley, Tatra Mountains, Poland. Norsk Geografisk Tidsskrift, 55(4), 235-240. https://doi.org/10.1080/00291950152746586 DOI
Oliva, M., & Fritz, M. (2018). Permafrost degradation on a warmer Earth: Challenges and perspectives. Current Opinion in Environmental Science & Health, 5, 14-18. https://doi.org/10.1016/j.coesh.2018.03.007 DOI
Onaca, A., Ardelean, A. C., Urdea, P., Ardelean, F., & Sărăşan, A. (2016). Genetic typologies of talus deposits derived from gps measurements in the alpine environment of the Făgăraş Mountains. Carpathian Journal of Earth and Environmental Sciences, 11(2), 609-616.
Pánek, T., Engel, Z., Mentlík, P., Braucherd, R., Břežnýa, M., Škarpicha, V., & Zonderva, A. (2016). Cosmogenic age constraints on post-LGM catastrophic rock slope failures in the Tatra Mountains (Western Carpathians). Catena, 138, 52-67. https://doi.org/10.1016/j.catena.2015.11.005 DOI
PIG-PIB (2021). The detailed geological map of the Tatra Mts., 1:10,000. https://geolog.pgi.gov.pl/
Rapp, A. (1960). Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geografiska Annaler, 42(2-3), 65-200. https://doi.org/10.1080/20014422.1960.11880942 DOI
Ravanel, L., & Deline, P. (2011). Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the 'Little Ice Age'. The Holocene, 21(2), 357-365. https://doi.org/10.1177/0959683610374887 DOI
Rączkowska, Z. (2006). Recent geomorphic hazards in the Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica, 40, 45-60.
Rączkowska, Z., & Cebulski, J. (2022). Quantitative assessment of the complexity of talus slope morphodynamics using multi-temporal data from terrestrial laser scanning (Tatra Mts., Poland). Catena, 209(1), 105792. https://doi.org/10.1016/j.catena.2021.105792 DOI
Rączkowska, Z., Cebulski, J., Rączkowski, W., Wojciechowski, T., & Perski, Z. (2017/2018). Using TLS for monitoring talus slope morphodynamics in the Tatra Mts. Studia Geomorphologica Carpatho-Balcanica, 51/52, 179-198.
Rączkowski, W. (1981). Zróżnicowanie współczesnych procesów grawitacyjnych w Dolinie Pięciu Stawów Polskich (Tatry Wysokie). Biuletyn Instytutu Geologicznego, 332, 139-152.
Reznichenko, N. V., Andrews, G. R., Geater, R. E., & Strom, A. (2017). Multiple origins of large hummock deposits in Alai Valley, Northern Pamir: implications for palaeoclimate reconstructions. Geomorphology, 285, 347-362. https://doi.org/10.1016/j.geomorph.2017.02.019 DOI
Sass, O. (2006). Determination of the internal structure of alpine talus deposits using different geophysical methods (Lechtaler Alps, Austria). Geomorphology, 80(1-2), 45-58. https://doi.org/10.1016/j.geomorph.2005.09.006 DOI
Sass, O., & Oberlechner, M. (2012). Is climate change causing increased rockfall frequency in Austria. Natural Hazards and Earth System Science, 12(11), 3209-3216. https://doi.org/10.5194/nhess-12-3209-2012 DOI
Senderak, K., Kondracka, M., & Gądek, B. (2019). Postglacial talus slope development imaged by the ERT method: comparison of slopes from SW Spitsbergen, Norway and Tatra Mountains, Poland. Open Geosciences, 11(1), 1084-1097. https://doi.org/10.1515/geo-2019-0084 DOI
Senderak, K., Kondracka, M., & Gądek, B. (2021). Processes controlling the development of talus slopes in SW Spitsbergen: the role of deglaciation and periglacial conditions. Land and Degradation and Development, 32(1), 208-223. https://doi.org/10.1002/ldr.3716 DOI
Strunden, J., Ehlers, T. A., Brehm, D., & Nettesheim, M. (2015). Spatial and temporal variations in rockfall determined from TLS measurements in a deglaciated valley, Switzerland. Journal of Geophysical Research: Earth Surface, 120(7), 1251-1273. https://doi.org/10.1002/2014JF003274 DOI
Šilhán, K., & Tichavský, R. (2016). Recent increase in debris flow activity in the Tatras Mountains: results of a regional dendrogeomorphic reconstruction. Catena, 143, 221-231. https://doi.org/10.1016/j.catena.2016.04.015 DOI
Ustrnul, Z., Walawender, E., Czekierda, D., P, Lapin, M., & Mikulova, K. (2015). Precipitation and snow cover. Sheet II.3, Maps 1 and 5, 1: 250,000. In K. Dąbrowska, M. Guzik, (Eds.), Atlas of the Tatra Mountains, Abiotic Nature. Tatrzański Park Narodowy.
Zasadni, J., Kłapyta, P., Broś, E., Ivy-Ochs, S., Świąder, A., Christl, M., & Balážovičová, L. (2020). Latest Pleistocene glacier advances and post-Younger Dryas rock glacier stabilization in the Mt. Kriváň group, High Tatra Mountains, Slovakia. Geomorphology, 358(5). https://doi.org/10.1016/j.geomorph.2020.107093 DOI
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., … & Vincent, C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745-762. https://doi.org/10.3189/2015JoG15J017 DOI

Relation:

Geographia Polonica

Volume:

96

Issue:

1

Start page:

53

End page:

67

Detailed Resource Type:

Article

Resource Identifier:

oai:rcin.org.pl:238337 ; doi:10.7163/GPol.0245 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0245

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style:

This page uses 'cookies'. More information