• Wyszukaj w całym Repozytorium
  • Piśmiennictwo i mapy
  • Archeologia
  • Baza Młynów
  • Nauki przyrodnicze

Szukaj w Repozytorium

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Piśmiennictwo i mapy

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Archeologia

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Baza Młynów

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Nauki przyrodnicze

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Projekty RCIN i OZwRCIN

Obiekt

Tytuł: Determining water level fluctuations in small-area lakes using satellite radar data

Twórca:

Piasecki, Adam : Autor Affiliation ORCID ; Witkowski, Wojciech T. : Autor Affiliation ORCID

Data wydania/powstania:

2024

Typ zasobu:

Tekst

Inny tytuł:

Geographia Polonica Vol. 97 No. 1 (2024)

Wydawca:

IGiPZ PAN

Miejsce wydania:

Warszawa

Opis:

24 cm

Abstrakt:

The research objective was to determine whether and to what extent SAR data can be used to determine changes in the water level in small glacial lakes (with an area of ~1 km2). The research object was Lake Biskupińskie – a small post-glacial lake in central Poland. As part of the research, a methodology for determining water level in small-area lakes based on radar data was developed, the potential for determining lake water levels using high- and medium-resolution SAR data was determined, and the results were verified against field measurements. The analyses employed data from two satellites, TerraSAR-X and Sentinel-1. The research confirmed the effectiveness of using SAR data to determine water-level fluctuations in small glacial lakes. The proposed methodology for working with data from the Sentinel-1 satellite allows for accurate estimation of WLF based on the results of interferometric analyses. Comparative analysis of the radar data results (lake surface) and field measurements (water level) were fully consistent with the data from TerraSAR-X and partially consistent with the data from Sentinel-1. The methodology of radar data analysis to determine WLF proposed in the paper has major research and applied potential, especially in the reconstruction of historical lake water levels.

Bibliografia:

Altunkaynak, A., Şen, Z. (2007). Fuzzy logic model of lake water level fluctuations in Lake Van, Turkey. Theoretical and Applied Climatology, 90(3), 227-233. https://doi.org/10.1007/s00704-006-0267-z DOI
Bourgeau-Chavez, L., Endres, S., Battaglia, M., Miller, M. E., Banda, E., Laubach, Z., … & Marcaccio, J. (2015). Development of a bi-national Great Lakes coastal wetland and land use map using threeseason PALSAR and Landsat imagery. Remote Sensing, 7(7), 8655-8682. https://doi.org/10.3390/rs70708655 DOI
Brisco, B., Murnaghan, K., Wdowinski, S., & Hong, S. H. (2015). Evaluation of RADARSAT-2 acquisition modes for wetland monitoring applications. Canadian Journal of Remote Sensing, 41(5), 431-439. https://doi.org/10.1080/07038992.2015.1104636 DOI
Cao, N., Lee, H., Jung, H. C., & Yu, H. (2018). Estimation of water level changes of large- scale Amazon wetlands using ALOS2 ScanSAR differential interferometry. Remote Sensing, 10(6), 966. https://doi.org/10.3390/rs10060966 DOI
Coops H, Beklioglu M, & Crisman, T. L. (2003). The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions. Hydrobiologia, 506, 23-27. https://doi.org/10.1023/B:HYDR.0000008595.14393.77 DOI
Coulibaly, P. (2010). Reservoir computing approach to Great Lakes water level forecasting. Journal of Hydrology, 381(1-2), 76-88. https://doi.org/10.1016/j.jhydrol.2009.11.027 DOI
Demir, V., & Yaseen, Z. M. (2023). Neurocomputing intelligence models for lakes water level forecasting: A comprehensive review. Neural Computing and Applications, 35, 303-343. https://doi.org/10.1007/s00521-022-07699-z DOI
Gownaris, N. J., Rountos, K. J., Kaufman, L., Kolding, J., Lwiza, K. M. M., & Pikitch, E. K. (2018). Water level fluctuations and the ecosystem functioning of lakes. Journal of Great Lakes Research, 44(6), 1154-1163. https://doi.org/10.1016/j.jglr.2018.08.005 DOI
Håkanson, L. (1977). The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Canadian Journal of Earth Sciences, 14(3), 397-412. https://doi.org/10.1139/e77-040 DOI
Hegerl, G. C., Black, E., Allan, R. P., Ingram, W. J., Polson, D., & Trenberth, K. E. (2015). Challenges in quantifying changes in the global water cycle. Bulletin of the American Meteorological Society, 96(7), 1097-1115. https://doi.org/10.1175/BAMS-D-13-00212.1 DOI
Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514-517, 1-13. https://doi.org/10.1016/j.tecto.2011.10.013 DOI
Keddy, P. A., & Reznicek, A. A. (1986). Great Lakes vegetation dynamics: The role of fluctuating water levels and buried seeds. Journal of Great Lakes Research, 12(1), 25-36. https://doi.org/10.1016/S0380-1330(86)71697-3 DOI
Nagabhatla, N., Cassidy-Neumiller, M., Francine, N. N., & Maatta, N. (2021). Water, conflicts and migration and the role of regional diplomacy: Lake Chad, Congo Basin, and the Mbororo pastoralist. Environmental Science & Policy, 122, 35-48. https://doi.org/10.1016/j.envsci.2021.03.019 DOI
Nowlin, W. H., Davies, J. M., Nordin, R. N., & Mazumder, A. (2004). Effects of water level fluctuation and short-term climate variation on thermal and stratification regimes of a British Columbia reservoir and lake. Lake and Reservoir Management, 20(2), 91-109. https://doi.org/10.1080/07438140409354354 DOI
Palomino-Ángel, S., Anaya-Acevedo, J. A., Simard, M., Liao, T.-H., & Jaramillo, F. (2019). Analysis of floodplain dynamics in the Atrato River Colombia using SAR interferometry. Water. 11(5), 875. https://doi.org/10.3390/w11050875 DOI
Palomino-Ángel, S., Vázquez, R. F., Hampel, H., Anaya, J. A., Mosquera, P. V., Lyon, S. W., & Jaramillo, F. (2022). Retrieval of simultaneous water-level changes in small lakes with InSAR. Geophysical Research Letters, 49(2), e2021GL095950. https://doi.org/10.1029/2021GL095950 DOI
Piasecki, A., & Marszelewski, W. (2014). Dynamics and consequences of water level fluctuations of selected lakes in the catchment of the Ostrowo-Gopło Channel. Limnological Review, 14(4), 187-194. https://doi.org/10.1515/limre-2015-0009 DOI
Piasecki, A., Jurasz, J., & Adamowski, J. F. (2018). Forecasting surface water-level fluctuations of a small glacial lake in Poland using a wavelet-based artificial intelligence method. Acta Geophysica, 66(5), 1093-1107. https://doi.org/10.1007/s11600-018-0183-5 DOI
Piasecki, A., & Witkowski, W. T. (2021). Application of the Triple Diagram Method in forecasting lake water level, on the example of Lake Charzykowskie. Journal of Water and Land Development, (51), 11-16. https://doi.org/10.24425/jwld.2021.139009 DOI
Wdowinski, S., Kim, S. W., Amelung, F., Dixon, T. H., Miralles-Wilhelm, F., & Sonenshein, R. (2008). Space-based detection of wetlands' surface water level changes from L-band SAR interferometry. Remote Sensing of Environment, 112(3), 681-696. https://doi.org/10.1016/j.rse.2007.06.008 DOI
Wilcox, D. A. (2007). Lake-level variability and water availability in the Great Lakes. U.S. Geological Survey. https://doi.org/10.3133/cir1311 DOI
Wilcox, K. L., Petrie, S. A., Maynard, L. A., & Meyer, S. W. (2003). Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. Journal of Great Lakes Research, 29(4), 664-680. https://doi.org/10.1016/S0380-1330(03)70469-9 DOI
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly, C. M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388-403. https://doi.org/10.1038/s43017-020-0067-5 DOI
Yuan, T., Lee, H., Jung, H. C., Aierken, A., Beighley, E., Alsdorf, D. E., Tshimanga, R. M., & Kim, D. (2017). Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry. Remote Sensing of Environment, 201, 57-72. https://doi.org/10.1016/j.rse.2017.09.003 DOI
Zhang, B., Wdowinski, S., Oliver-Cabrera, T., Koirala, R., Jo, M. J., & Osmanoglu, B. (2018). Mapping the extent and magnitude of severe flooding induced by hurricane Irma with multi-temporal Sentinel-1 SAR and InSAR observations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42, 2237-2244. https://doi.org/10.5194/isprs-archives-XLII-3-2237-2018 DOI
Zhang, M., Li, Z., Tian, B., Zhou, J., & Tang, P. (2016). The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study. International Journal of Applied Earth Observation and Geoinformation, 45, 1-13. https://doi.org/10.1016/j.jag.2015.10.001 DOI

Czasopismo/Seria/cykl:

Geographia Polonica

Tom:

97

Zeszyt:

1

Strona pocz.:

91

Strona końc.:

106

Szczegółowy typ zasobu:

Artykuł

Identyfikator zasobu:

oai:rcin.org.pl:240974 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0270

Źródło:

CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; kliknij tutaj, żeby przejść

Język:

eng

Język streszczenia:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa 4.0

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R

Dostęp:

Otwarty

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji