• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Long-term analysis of thermal comfort conditions during heat waves in Ukraine

Subtitle:

Geographia Polonica Vol. 95 No. 1 (2022)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

The aim of this study is assessment of thermal comfort conditions during heat waves in Ukraine in the years 1961-2015. The assessment is based on the thermal index Physiologically Equivalent Temperature. This study uses data from 29 meteorological stations across Ukraine. The research showed an increasing frequency of occurrence of heat waves (HWs) in the territory of Ukraine in the last decades. East and south Ukraine (except of coastal stations) experienced the most strenuous human-biometeorological conditions whilst HWs were recorded in the country. Lower mean PET values were found in Western region of the country. The obtained results suggest that the HW event of 2010 was the longest and the most strenuous HW in human-biometeorological terms since 1961.

References:

An der Heiden, M., Muthers, S., Niemann, H., Buchholz, U., Grabenhenrich, L., Matzarakis, A. (2020). Heat-related mortality: An analysis of the impact of heatwaves in Germany between 1992 and 2017 Deutsches Aerzteblatt Online, 117(37), 603. https://doi.org/10.3238/arztebl.2020.0603 DOI
Ballester, J., Robine, J.-M., Herrmann, F.R., Rodó, X. (2011). Long-term projections and acclimatizationscenarios of temperature-related mortality in Europe. Nature Communications, 2(1), 358.https://doi.org/10.1038/ncomms1360 DOI
Ballester, J., Rodó, X., Giorgi, F. (2010). Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Climate Dynamics, 35(7-8), 1191-1205. https://doi.org/10.1007/s00382-009-0641-5 DOI
Barriopedro, D., Fischer, E.M., Luterbacher, J., Trigo, R.M., García-Herrera, R. (2011). The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332(6026), 220-224. https://doi.org/10.1126/science.1201224 DOI
Basarin, B., Lukić, T., Matzarakis, A. (2016). Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. International Journal of Biometeorology, 60(1), 139-150. https://doi.org/10.1007/s00484-015-1012-z DOI
Basu, R. (2009). High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environmental Health, 8(1), 40. https://doi.org/10.1186/1476-069X-8-40 DOI
Błażejczyk, K., Idzikowska, D., Błażejczyk, A. (2013). Forecast changes for heat and cold stress in Warsaw in the 21st century, and their possible influence on mortality risk. Papers on global change, 20, 47-62. https://doi.org/10.2478/igbp-2013-0002 DOI
Błażejczyk, K., Nejedlik, P., Skrynyk, O., Halaś, A., Skrynyk, O., Błażejczyk, A., Mikulova, K. (2020). Influence of geographical factors on thermal stress in northern Carpathians. International Journal of Biometeorology, 65(9), 1553-1566. https://doi.org/10.1007/s00484-020-02011-x DOI
Bunker, A., Wildenhain, J., Vandenbergh, A., Henschke, N., Rocklöv, J., Hajat, S., Sauerborn, R. (2016). Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine, 6, 258-268. https://doi.org/10.1016/j.ebiom.2016.02.034 DOI
Fenner, D., Holtmann, A., Krug, A., Scherer, D. (2019). Heat waves in Berlin and Potsdam, Germany - Long-term trends and comparison of heat wave definitions from 1893 to 2017. International Journal of Climatology, 39(4), 2422-2437. https://doi.org/10.1002/joc.5962 DOI
Fink, A.H., Brücher, T., Krüger, A., Leckebusch, G.C., Pinto, J.G., Ulbrich, U. (2004). The 2003 European summer heatwaves and drought - synoptic diagnosis and impacts. Weather, 59(8), 209-216. https://doi.org/10.1256/wea.73.04 DOI
Fouillet, A., Rey, G., Wagner, V., Laaidi, K., Empereur-Bissonnet, P., Le Tertre, A., Frayssinet, P., Bessemoulin, P., Laurent, F., De Crouy-Chanel, P., Jougla, E., Hémon, D. (2008). Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. International Journal of Epidemiology, 37(2), 309-317. https://doi.org/10.1093/ije/dym253 DOI
Gershunov, A., Cayan, D.R., Iacobellis, S.F. (2009). The great 2006 heat wave over California and Nevada: Signal of an increasing trend. Journal of Climate, 22(23), 6181-6203. https://doi.org/10.1175/2009JCLI2465.1 DOI
Gosling, S.N., Lowe, J.A., McGregor, G.R., Pelling, M., Malamud, B.D. (2009). Associations between elevated atmospheric temperature and human mortality: A critical review of the literature. Climatic Change, 92(3-4), 299-341. https://doi.org/10.1007/s10584-008-9441-x DOI
Grumm, R.H. (2011). The central European and russian heat event of July-August 2010. Bulletin of the American Meteorological Society, 92(10), 1285-1296. https://doi.org/10.1175/2011BAMS3174.1 DOI
Hajat, S., O'Connor, M., Kosatsky, T. (2010). Health effects of hot weather: from awareness of risk factors to effective health protection. Lancet, 375(9717), 856-863. https://doi.org/10.1016/S0140-6736(09)61711-6 DOI
Heinrich, G., Gobiet, A. (2012). The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models. International Journal of Climatology, 32(13), 1951-1970. https://doi.org/10.1002/joc.2421 DOI
Höppe, P. (1999). The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75. https://doi.org/10.1007/s004840050118 DOI
Hoy, A., Hänsel, S., Skalak, P., Ustrnul, Z., Bochníček, O. (2017). The extreme European summer of 2015 in a long-term perspective. International Journal of Climatology, 37(2), 943-962. https://doi.org/10.1002/joc.4751 DOI
Katerusha, O., Matzarakis, A. (2015). Thermal bioclimate and climate tourism analysis for Odessa, Black Sea. Geografiska Annaler: Series A, Physical Geography, 97(4), 671-679. https://doi.org/10.1111/geoa.12107 DOI
Konstantinov, P.I., Varentsov, M.I., Malinina, E.P. (2014). Modeling of thermal comfort conditions inside the urban boundary layer during Moscow's 2010 summer heat wave (case-study). Urban Climate, 10(P3), 563-572. https://doi.org/10.1016/j.uclim.2014.05.002 DOI
Kovats, R.S., Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 41-55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843 DOI
Krzyżewska, A., Dyer, J. (2018). The August 2015 mega-heatwave in Poland in the context of past events. Weather, 73(7), 207-214. https://doi.org/10.1002/wea.3244 DOI
Krzyżewska, A., Wereski, S., Demczuk, P. (2020). Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather, 75(6), 183-189. https://doi.org/10.1002/wea.3497 DOI
Kyselý, J. (2002). Temporal fluctuations in heat waves at Prague-Klementinum, the Czech Republic, from 1901-97, and their relationships to atmospheric circulation. International Journal of Climatology, 22(1), 33-50. https://doi.org/10.1002/joc.720 DOI
Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21(1), 91-103. https://doi.org/10.3354/cr021091
Le Tertre, A., Lefranc, A., Eilstein, D., Declercq, C., Medina, S., Blanchard, M., Chardon, B., Fabre, P., Filleul, L., Jusot, J.-F., Pascal, L., Prouvost, H., Cassadou, S., Ledrans, M. (2006). Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology, 17(1), 75-79. https://doi.org/10.1097/01.ede.0000187650.36636.1f DOI
Lhotka, O., Kyselý, J. (2015). Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology, 35(7), 1232-1244. https://doi.org/10.1002/joc.4050 DOI
Lipinskyi, V.M., Diachuk, V.A., Babichenko, V.M. (Eds.) (2003). Klimat Ukrainy(Climate of Ukraine). Kyiv: Vidavnictvo Rajevśkoho.
Matzarakis, A., Fröhlich, D., Bermon, S., Adami, P.E. (2018). Quantifying thermal stress for sport events - The case of the Olympic Games 2020 in Tokyo. Atmosphere, 9(12), 479. https://doi.org/10.3390/atmos9120479 DOI
Matzarakis, A., Mayer, H., Iziomon, M.G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-84. https://doi.org/10.1007/s004840050119 DOI
Matzarakis, A., Nastos, P. (2011). Analysis of tourism potential for Crete island, Greece. Global NEST Journal, 13(2), 141-149. https://journal.gnest.org/sites/default/files/Journal Papers/141-149_774_Matzarakis_13-2.pdf
Matzarakis, A., Rocco, M., Najjar, G. (2009). Thermal bioclimate in Strasbourg - the 2003 heat wave. Theoretical and Applied Climatology, 98(3-4), 209-220. https://doi.org/10.1007/s00704-009-0102-4 DOI
Matzarakis, A., Rutz, F., Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments - application of the RayMan model. International Journal of Biometeorology, 51(4), 323-334. https://doi.org/10.1007/s00484-006-0061-8 DOI
Meehl, G.A., Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994-997. https://doi.org/10.1126/science.1098704 DOI
Monteiro, A., Carvalho, V., Oliveira, T., Sousa, C. (2013). Excess mortality and morbidity during the July 2006 heat wave in Porto, Portugal. International Journal of Biometeorology, 57(1), 155-167. https://doi.org/10.1007/s00484-012-0543-9 DOI
Owczarek, M. (2019). The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theoretical and Applied Climatology, 137(1-2), 855-869. https://doi.org/10.1007/s00704-018-2633-z DOI
Parsons, K.C. (2014). Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance. Boca Raton: CRC Press. DOI
Potchter, O., Cohen, P., Lin, T.-P., Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. The Science of the Total Environment, 631-632, 390-406. https://doi.org/10.1016/j.scitotenv.2018.02.276 DOI
Radinović, D., Ćurić, M. (2012). Criteria for heat and cold wave duration indexes. Theoretical and Applied Climatology, 107(3-4), 505-510. https://doi.org/10.1007/s00704-011-0495-8 DOI
Rahmstorf, S., Coumou, D. (2011). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 108(44), 17 905-17 909. https://doi.org/10.1073/pnas.1101766108 DOI
Rebetez, M., Dupont, O., Giroud, M. (2009). An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theoretical and Applied Climatology, 95, 1-7. https://doi.org/10.1007/s00704-007-0370-9 DOI
Revich, B.A., Shaposhnikov, D.A. (2012). Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Studies on Russian Economic Development, 23(2), 195-207. https://doi.org/10.1134/S1075700712020116 DOI
Roshan, G.R., Ghanghermeh, A.A., Kong, Q. (2018). Spatial and temporal analysis of outdoor human thermal comfort during heat and cold waves in Iran. Weather and Climate Extremes, 19, 58-67. https://doi.org/10.1016/j.wace.2018.01.005 DOI
Ruuhela, R., Jylhä, K., Lanki, T., Tiittanen, P., Matzarakis, A. (2017). Biometeorological assessment of mortality related to extreme temperatures in Helsinki Region, Finland, 1972-2014. International Journal of Environmental Research and Public Health, 14(8), 944. https://doi.org/10.3390/ijerph14080944 DOI
Shevchenko, O.G., Samchuk, E.V., Snizhko, S.I. (2013). Characteristics of synoptic processes during heat wave in July-August 2010 in Ukraine. Proceedings of the Russian State Hydrometeorological University, 29, 85-94.
Shevchenko, O., Lee, H., Snizhko, S., Mayer, H. (2014). Long-term analysis of heat waves in Ukraine. International Journal of Climatology, 34(5), 1642-1650. https://doi.org/10.1002/joc.3792 DOI
Shevchenko, O., Oliinyk, R., Snizhko, S., Svintsitska, H., Kostyrko, I. (2020). Indexing of Heatwaves in Ukraine. Water, 12, 962. https://doi.org/10.3390/w12040962 DOI
Shevchenko, O., Snizhko, S., Matzarakis, A. (2020). Recent trends on human thermal bioclimate conditions in Kyiv, Ukraine. Geographia Polonica, 93(1), 89-106. https://doi.org/10.7163/GPol.0164 DOI
Smith, K.R., Woodward, A., Campbell-Lendrum, D., Chadee Trinidad, D.D., Honda, Y., Liu, Q., Aranda, C., Berry, H., Butler, C. (2014). Human health: impacts, adaptation, and co-benefits. In C.B. Field, V. Barros, D.J. Dokken (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed., pp. 709-754). Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap11_FINAL.pdf
Staiger, H., Laschewski, G., Matzarakis, A. (2019). Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere, 10(1), 1-15. https://doi.org/10.3390/atmos10010018 DOI
Thorsson, S., Rocklöv, J., Konarska, J., Lindberg, F., Holmer, B., Dousset, B., Rayner, D. (2014). Mean radiant temperature - A predictor of heat related mortality. Urban Climate, 10, 332-345. https://doi.org/10.1016/j.uclim.2014.01.004 DOI
Tomczyk, A.M. (2017). Atmospheric circulation during heat waves in Eastern Europe. Geografie, 122(2), 121-146. https://doi.org/10.37040/geografie2017122020121 DOI
Tomczyk, A.M., Bednorz, E., Matzarakis, A. (2020). Human-biometeorological conditions during heat waves in Poland. International Journal of Climatology, 40(12), 5043-5055. https://doi.org/10.1002/joc.6503 DOI
Tomczyk, A.M., Bednorz, E., Półrolniczak, M., Kolendowicz, L. (2019). Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology, 137(3-4), 1909-1923. https://doi.org/10.1007/s00704-018-2715-y DOI
Wibig, J. (2017). Heat waves in Poland in the period 1951-2015: Trends, patterns and driving factors. Meteorology Hydrology and Water Management, 6(1), 37-45. https://doi.org/10.26491/mhwm/78420 DOI
Yu, S., Yan, Z., Freychet, N., Li, Z. (2020). Trends in summer heatwaves in central Asia from 1917 to 2016:Association with large-scale atmospheric circulation patterns. International Journal of Climatology,40(1), 115-127. https://doi.org/10.1002/joc.6197 DOI

Relation:

Geographia Polonica

Volume:

95

Issue:

1

Start page:

53

End page:

70

Detailed Resource Type:

Article

Resource Identifier:

oai:rcin.org.pl:234339 ; doi:10.7163/GPol.0226 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0226

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style:

This page uses 'cookies'. More information