• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Spatial Diversity of Cloud-to-Ground Lightning Flashes in the Kujawsko-Pomorskie Voivodeship (Poland), 2002-2019

Creator:

Sulik, Sławomir : Autor Affiliation ORCID ; Kejna, Marek : Autor Affiliation ORCID

Date issued/created:

2022

Resource type:

Text

Subtitle:

Geographia Polonica Vol. 95 No. 1 (2022)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

This research focuses on the spatial diversity of cloud-to-ground (CG) flashes in the Kujawsko-Pomorskie voivodeship (Poland) based on data from the PERUN lightning detection system, 2002-2019. The storm season usually lasts from May to September, with July having the highest number of thunderstorms days and flashes. Thunderstorms most often occur in the afternoon. A generated grid of 5×5-km cells was used to characterise the variables related to CG flashes. In the analysed period 432,925 CG flashes were detected in the voivodeship (24,051 flashes year-1). The highest electrical activity was found in the south-eastern part of the province. In grids with a large water surface, the number of CG flashes was small and increased with distance from the Vistula River. The distribution of atmospheric discharges in major cities of the region (Bydgoszcz, Toruń, Włocławek and Grudziądz) was random. Years with greater electrical storm activity (27,614 discharges in 2017) are interspersed with calmer years (5000-7000 discharges). There were found an upward trend in lightning discharges (of 1681 discharges year-1) during period 2002-2019. To develop maps specifying the number of thunderstorm days, a 1×1-km grid cell was used with a 15-km radius buffer from the bin centre. The annual number of thunderstorm days in the voivodeship fluctuates from 27 to 41 days and increases from north-west to south-east. Consecutive days with a thunderstorm, the most common runs are of three days in a row with a storm. The number of thunderstorm days shows an increasing trend (0.82 days year-1). This trend is related to the increase in air temperature in the storm season (Apr-Sept) reaching (0.04°C/year).

References:

Anderson, G., Klugmann, D. (2014). A European lightning density analysis using 5 years of ATDnet data. Natural Hazards and Earth System Sciences, 14(4), 815-829. https://doi.org/10.5194/nhess-14-815-2014 DOI
Bielec, Z. (2000). Przebieg dobowy i charakterystyka synoptyczna burz w Krakowie w latach 1896-1995. Kraków: Uniwersytet Jagielloński.
Bielec, Z. (1998). Long-term variability of the thunderstorm frequency in Szczecin, Łódź, Kraków and Kasprowy Wierch in the period 1954-1993. Acta Universitatis Lodziensis, Folia Geographica Physica, 3, 449-453.
Bielec-Bąkowska, Z. (2013). Burze i grady w Polsce. Prace Geograficzne, (132), 99-132. https://doi.org/10.4467/20833113PG.13.005.1095 DOI
Biron, D. (2009). LAMPINET-Lightning detection in Italy. In H.D. Betz, U. Schumann, P. Laroche (Eds.), Lightning: Principles, instruments and applications review of modern lightning research (pp. 141-159). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-9079-0_6 DOI
Bodzak, P. (2006). Detekcja i lokalizacja wyładowań atmosferycznych. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
CORINE Land Cover. (2018). https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
Czernecki, B., Taszarek, M., Kolendowicz, L., Konarski, J. (2016). Relationship between human observations of thunderstorms and PERUN lightning detection network in Poland. Atmospheric Research, 167, 118-128. https://doi.org/10.1016/j.atmosres.2015.08.003 DOI
Diendorfer, G. (2008). Some comments on the achievable accuracy of local ground flash density values. In 29th International Conference on Lightning Protection (pp. 2-8-1-2-8-6). Uppsala, Sweden: ICLP Centre.
Enno, S.E. (2011). A climatology of cloud-to-ground lightning over Estonia, 2005-2009. Atmospheric Research, 100, 310-317. https://doi.org/10.1016/j.atmosres.2010.08.024 DOI
Główny Urząd Statystyczny (Statistics Poland), https://www.stat.gov.pl/
Houze Jr, R.A. (2004). Mesoscale convective systems. Reviews of Geophysics, 42(4), RG4003. https://doi.org/10.1029/2004RG000150 DOI
Kolendowicz, L. (1996). Burze na obszarze Polski Północno-Zachodniej w świetle częstości występowania różnych typów cyrkulacji atmosfery. Zeszyty IGiPZ PAN, 39, 1-115.
Kolendowicz, L. (2006). The influence of synoptic situations on the occurrence of days with thunderstorms during a year in the territory of Poland. International Journal of Climatology, 26(13), 1803-1820. https://doi.org/10.1002/joc.1348 DOI
Kotroni, V., Lagouvardos, K. (2016). Lightning in the Mediterranean and its relation with sea-surface temperature. Environmental Research Letters, 11, 034006. https://doi.org/10.1088/1748-9326/11/3/034006 DOI
Lorenc, H. (2005). Atlas klimatu Polski. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Mäkelä, A., Rossi, P., Schultz, D.M. (2011). The daily cloud-to-ground lightning flash density in the contiguous United States and Finland. Monthly Weather Review, 139, 1323-1337. https://doi.org/10.1175/2010MWR3517.1 DOI
Novák, P., Kyznarová, H. (2011). Climatology of lightning in the Czech Republic. Atmospheric Research, 100(4), 318-333. https://doi.org/10.1016/j.atmosres.2010.08.022 DOI
Pohjola, H., Mäkelä, A. (2013). The comparison of GLD360 and EUCLID lightning location syste DOI
Przybylak, R., Uscka-Kowalkowska, J., Araźny, A., Kejna, M., Kunz, M., Maszewski, R. (2017). Spatial distribution of air temperature in Toruń (Central Poland) and its causes. Theoretical and Applied Climatology, 127(1), 441-463. https://doi.org/10.1007/s00704-015-1644-2 DOI
Santos, J.A., Reis, M.A., Sousa, J., Leite, S.M., Correia, S., Janeira, M., Fragoso, M. (2012). Cloud-to-ground lightning in Portugal: Patterns and dynamical forcing. Natural Hazards and Earth System Sciences, 12(3), 639-649. https://doi.org/10.5194/nhess-12-639-2012 DOI
Schulz, W., Cummins, K., Diendorfer, G., Dorninger, M. (2005). Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. Journal of Geophysical Research: Atmospheres, 110(D9). https://doi.org/10.1029/2004JD005332 DOI
Soriano, L.R., De Pablo, F., Tomas, C. (2005). Ten-year study of cloud-to ground lightning activity in the Iberian Peninsula. Journal of Atmospheric and Solar-Terrestrial Physics, 67(16), 1632-1639. https://doi.org/10.1016/j.jastp.2005.08.019 DOI
Sulik, S., Kejna, M. (2020). The origin and course of severe thunderstorm outbreaks in Poland on 10 and 11 August 2017. Bulletin of Geography: Physical Geography Series, 18(1), 25-39. https://doi.org/10.2478/bgeo-2020-0003 DOI
Taszarek, M., Czernecki, B., Kozioł, A. (2015). A cloud-to-ground lightning climatology for Poland. Monthly Weather Review, 143, 4285-4304. https://doi.org/10.1175/MWR-D-15-0206.1 DOI
Taszarek, M., Allen, J., Púčik, T., Groenemeijer, P., Czernecki, B., Kolendowicz, L., Lagouvardos, K., Kotroni, V., Schulz, W. (2019). A climatology of thunderstorms across Europe from a synthesis of multiple data sources. Journal of Climate, 32(6), 1813-1837. https://doi.org/10.1175/JCLI-D-18-0372.1 DOI
Taszarek, M., Pilguj, N., Orlikowski, J., Surowiecki, A., Walczakiewicz, S., Pilorz, W., Piasecki, K., Pajurek, Ł., Półrolniczak, M. (2019). Derecho evolving from a mesocyclone - A study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation, Monthly Weather Review, 147(6), 2283-2306, https://doi.org/10.1175/MWR-D-18-0330.1 DOI
Taszarek, M., Kendzierski, S., Pilguj, N. (2020). Hazardous weather affecting European airports: Climatological estimates of situations with limited visibility, thunderstorm, low-level wind shear and snowfall form ERA5. Weather and Climate Extremes, 28, 100243. https://doi.org/10.1016/j.wace.2020.100243 DOI
Wapler, K. (2013). High-resolution climatology of lightning characteristics within Central Europe. Meteorology and Atmospheric Physics, 122, 175-184. https://doi.org/10.1007/s00703-013-0285-1 DOI
Wibig, J. (2017). Heat waves in Poland in the period 1951-2015: Trends, patterns and driving factors. Meteorology Hydrology and Water Management Research and Operational Applications, 6(1), 37-45. https://doi.org/10.26491/mhwm/78420 DOI
Wu, F., Cui, X., Zhang, D.L., Liu, D., Zheng, D. (2016). SAFIR-3000 lightning statistics over the Beijing Metropolitan Region during 2005-07. Journal of Applied Meteorology and Climatology, 55(12), 2613-2633. https://doi.org/10.1175/JAMC-D-16-0030.1 DOI

Relation:

Geographia Polonica

Volume:

95

Issue:

1

Start page:

5

End page:

23

Detailed Resource Type:

Article

Resource Identifier:

oai:rcin.org.pl:232834 ; doi:10.7163/GPol.0224 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0224

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information