Metadata language
Geographia Polonica Vol. 95 No. 1 (2022)
Creator:Sulik, Sławomir : Autor ; Kejna, Marek : Autor
Publisher: Place of publishing: Date issued/created: Description: Subject and Keywords:cloud-to-ground lighting ; thunderstorm days ; climate change ; Kujawsko-Pomorskie voivodship ; Poland
Abstract:This research focuses on the spatial diversity of cloud-to-ground (CG) flashes in the Kujawsko-Pomorskie voivodeship (Poland) based on data from the PERUN lightning detection system, 2002-2019. The storm season usually lasts from May to September, with July having the highest number of thunderstorms days and flashes. Thunderstorms most often occur in the afternoon. A generated grid of 5×5-km cells was used to characterise the variables related to CG flashes. In the analysed period 432,925 CG flashes were detected in the voivodeship (24,051 flashes year-1). The highest electrical activity was found in the south-eastern part of the province. In grids with a large water surface, the number of CG flashes was small and increased with distance from the Vistula River. The distribution of atmospheric discharges in major cities of the region (Bydgoszcz, Toruń, Włocławek and Grudziądz) was random. Years with greater electrical storm activity (27,614 discharges in 2017) are interspersed with calmer years (5000-7000 discharges). There were found an upward trend in lightning discharges (of 1681 discharges year-1) during period 2002-2019. To develop maps specifying the number of thunderstorm days, a 1×1-km grid cell was used with a 15-km radius buffer from the bin centre. The annual number of thunderstorm days in the voivodeship fluctuates from 27 to 41 days and increases from north-west to south-east. Consecutive days with a thunderstorm, the most common runs are of three days in a row with a storm. The number of thunderstorm days shows an increasing trend (0.82 days year-1). This trend is related to the increase in air temperature in the storm season (Apr-Sept) reaching (0.04°C/year).
References:
Anderson, G., Klugmann, D. (2014). A European lightning density analysis using 5 years of ATDnet data. Natural Hazards and Earth System Sciences, 14(4), 815-829. https://doi.org/10.5194/nhess-14-815-2014
Bielec, Z. (2000). Przebieg dobowy i charakterystyka synoptyczna burz w Krakowie w latach 1896-1995. Kraków: Uniwersytet Jagielloński.
Bielec, Z. (1998). Long-term variability of the thunderstorm frequency in Szczecin, Łódź, Kraków and Kasprowy Wierch in the period 1954-1993. Acta Universitatis Lodziensis, Folia Geographica Physica, 3, 449-453.
Bielec-Bąkowska, Z. (2013). Burze i grady w Polsce. Prace Geograficzne, (132), 99-132. https://doi.org/10.4467/20833113PG.13.005.1095
Biron, D. (2009). LAMPINET-Lightning detection in Italy. In H.D. Betz, U. Schumann, P. Laroche (Eds.), Lightning: Principles, instruments and applications review of modern lightning research (pp. 141-159). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-9079-0_6
Bodzak, P. (2006). Detekcja i lokalizacja wyładowań atmosferycznych. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
CORINE Land Cover. (2018). https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
Czernecki, B., Taszarek, M., Kolendowicz, L., Konarski, J. (2016). Relationship between human observations of thunderstorms and PERUN lightning detection network in Poland. Atmospheric Research, 167, 118-128. https://doi.org/10.1016/j.atmosres.2015.08.003
Diendorfer, G. (2008). Some comments on the achievable accuracy of local ground flash density values. In 29th International Conference on Lightning Protection (pp. 2-8-1-2-8-6). Uppsala, Sweden: ICLP Centre.
Enno, S.E. (2011). A climatology of cloud-to-ground lightning over Estonia, 2005-2009. Atmospheric Research, 100, 310-317. https://doi.org/10.1016/j.atmosres.2010.08.024
Główny Urząd Statystyczny (Statistics Poland), https://www.stat.gov.pl/
Houze Jr, R.A. (2004). Mesoscale convective systems. Reviews of Geophysics, 42(4), RG4003. https://doi.org/10.1029/2004RG000150
Kolendowicz, L. (1996). Burze na obszarze Polski Północno-Zachodniej w świetle częstości występowania różnych typów cyrkulacji atmosfery. Zeszyty IGiPZ PAN, 39, 1-115.
Kolendowicz, L. (2006). The influence of synoptic situations on the occurrence of days with thunderstorms during a year in the territory of Poland. International Journal of Climatology, 26(13), 1803-1820. https://doi.org/10.1002/joc.1348
Kotroni, V., Lagouvardos, K. (2016). Lightning in the Mediterranean and its relation with sea-surface temperature. Environmental Research Letters, 11, 034006. https://doi.org/10.1088/1748-9326/11/3/034006
Lorenc, H. (2005). Atlas klimatu Polski. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Mäkelä, A., Rossi, P., Schultz, D.M. (2011). The daily cloud-to-ground lightning flash density in the contiguous United States and Finland. Monthly Weather Review, 139, 1323-1337. https://doi.org/10.1175/2010MWR3517.1
Novák, P., Kyznarová, H. (2011). Climatology of lightning in the Czech Republic. Atmospheric Research, 100(4), 318-333. https://doi.org/10.1016/j.atmosres.2010.08.022
Pohjola, H., Mäkelä, A. (2013). The comparison of GLD360 and EUCLID lightning location syste
Przybylak, R., Uscka-Kowalkowska, J., Araźny, A., Kejna, M., Kunz, M., Maszewski, R. (2017). Spatial distribution of air temperature in Toruń (Central Poland) and its causes. Theoretical and Applied Climatology, 127(1), 441-463. https://doi.org/10.1007/s00704-015-1644-2
Santos, J.A., Reis, M.A., Sousa, J., Leite, S.M., Correia, S., Janeira, M., Fragoso, M. (2012). Cloud-to-ground lightning in Portugal: Patterns and dynamical forcing. Natural Hazards and Earth System Sciences, 12(3), 639-649. https://doi.org/10.5194/nhess-12-639-2012
Schulz, W., Cummins, K., Diendorfer, G., Dorninger, M. (2005). Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. Journal of Geophysical Research: Atmospheres, 110(D9). https://doi.org/10.1029/2004JD005332
Soriano, L.R., De Pablo, F., Tomas, C. (2005). Ten-year study of cloud-to ground lightning activity in the Iberian Peninsula. Journal of Atmospheric and Solar-Terrestrial Physics, 67(16), 1632-1639. https://doi.org/10.1016/j.jastp.2005.08.019
Sulik, S., Kejna, M. (2020). The origin and course of severe thunderstorm outbreaks in Poland on 10 and 11 August 2017. Bulletin of Geography: Physical Geography Series, 18(1), 25-39. https://doi.org/10.2478/bgeo-2020-0003
Taszarek, M., Czernecki, B., Kozioł, A. (2015). A cloud-to-ground lightning climatology for Poland. Monthly Weather Review, 143, 4285-4304. https://doi.org/10.1175/MWR-D-15-0206.1
Taszarek, M., Allen, J., Púčik, T., Groenemeijer, P., Czernecki, B., Kolendowicz, L., Lagouvardos, K., Kotroni, V., Schulz, W. (2019). A climatology of thunderstorms across Europe from a synthesis of multiple data sources. Journal of Climate, 32(6), 1813-1837. https://doi.org/10.1175/JCLI-D-18-0372.1
Taszarek, M., Pilguj, N., Orlikowski, J., Surowiecki, A., Walczakiewicz, S., Pilorz, W., Piasecki, K., Pajurek, Ł., Półrolniczak, M. (2019). Derecho evolving from a mesocyclone - A study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation, Monthly Weather Review, 147(6), 2283-2306, https://doi.org/10.1175/MWR-D-18-0330.1
Taszarek, M., Kendzierski, S., Pilguj, N. (2020). Hazardous weather affecting European airports: Climatological estimates of situations with limited visibility, thunderstorm, low-level wind shear and snowfall form ERA5. Weather and Climate Extremes, 28, 100243. https://doi.org/10.1016/j.wace.2020.100243
Wapler, K. (2013). High-resolution climatology of lightning characteristics within Central Europe. Meteorology and Atmospheric Physics, 122, 175-184. https://doi.org/10.1007/s00703-013-0285-1
Wibig, J. (2017). Heat waves in Poland in the period 1951-2015: Trends, patterns and driving factors. Meteorology Hydrology and Water Management Research and Operational Applications, 6(1), 37-45. https://doi.org/10.26491/mhwm/78420
Wu, F., Cui, X., Zhang, D.L., Liu, D., Zheng, D. (2016). SAFIR-3000 lightning statistics over the Beijing Metropolitan Region during 2005-07. Journal of Applied Meteorology and Climatology, 55(12), 2613-2633. https://doi.org/10.1175/JAMC-D-16-0030.1
doi:10.7163/GPol.0224 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0224
Source:CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Creative Commons Attribution BY 4.0 license
Terms of use:Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure
Access: