Wyszukiwanie zaawansowane
Wyszukiwanie zaawansowane
Wyszukiwanie zaawansowane
Wyszukiwanie zaawansowane
Wyszukiwanie zaawansowane
Polska Akademia Nauk. Komitet Ekologii
Strony 215-240 ; 24 cm ; Bibliografia na stronach 238-239 ; Streszczenie w języku angielskim
The rightness of a mathematical model can be verified by estimating its assumptions or by looking how it depicts the reality. It is tempting to try, according to the second way of checking, and see whether classic models of mathematical ecology can imitate the cyclic changes of population numbers — a phenomenon well documented by spectral and autocorrelatiye analyses. It turned out that these models are helpless at the whole complex of problems connected with population cycles. This refers to models of single population with time lag as well as to models with two-species situations, the prey-predator system included. The Chitty’s hypothesis, when translated to the mathematical model language, does not lead to density oscillations. In models with many eąuilibrium points the density oscillations can appear, but the typical, i.e. observed in nature period of these oscillations remains unexplained and the same holds to other phenomena connected with the population cycles. The situation does not change even if we introduce both space and dispersion of individuals to the model. Only in the case of Charnov-Finerty’s hypothesis at certain special conditions it is possible to evoke oscillations of density, but this model, too, similarly as all previous ones, does not explain the remaining phenomena connected with the population cycles.
oai:rcin.org.pl:206972 ; 0013-2969
MiIZ PAN, sygn. P.3259 ; kliknij tutaj, żeby przejść
Licencja Creative Commons Uznanie autorstwa 3.0 Polska
Zasób chroniony prawem autorskim. [CC BY 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -
Muzeum i Instytut Zoologii Polskiej Akademii Nauk
Biblioteka Muzeum i Instytutu Zoologii PAN
4 lut 2022
27 sie 2021
121
https://rcin.org.pl./publication/152029
Nazwa wydania | Data |
---|---|
Z. 3. Modele cyklicznych populacji / Uchmański J. | 4 lut 2022 |
Churchfield, S. Hollier, J. Brown, V. K.
Petrusewicz, K.
Frylestam, B.
Tiedemann, R. Kurt, F.
Le Boulengé, E. Le Boulengé-Nguyen, P. Y.
Churchfield, S.
Stenseth, N. C.