Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Ocena typu rozkładu przestrzennego populacji roślinnych ; Review of methods for determining the spacial distribution of plant populations
Polska Akademia Nauk. Komitet Ekologiczny
Strony 25-56 ; 24 cm ; Bibliografia na stronach 51-54 ; Streszczenie w języku angielskim
Methods for determining the type of population spatial structure belong to two main categories: methods of statistical analyses and methods of cartographic analysis. The former are an attempt to reduce empirical distribution density to the theoretical model of random distribution. Theoretical distributions have in common the assumption about independent occurrence of individuals (models of Bernoullie, Poisson and normal model) or their agglomerations (models of Cole, Thomas, Neyman and negatively binomial) in space. If in empirical studies it is only ascertained whether the species is absent or present in a determined length of series of sample areas or sectors (in point centered quarter method, Cottam and Curtis 1956) then Bernoullie’s model is used as a theoretical distribution. The probability Pi that the random variable will assume values 0, 1, 2, ... x is calculated according to equation (2), and expected theoretical numbers — as products of probability values and totals of empirical frequencies nt for the variable equal 0, 1, 2, ... x.Models of Bernoullie and Poisson are for step variable, whereas the theoretical model for continuous variable is normal distribution. Analysis of the type of distribution is connected in this case either with measurement of cover (Vasilevic 1969) or with measurement of density by means of non-surface methods (Kwiatkowska and Symonides 1978b). Empirical frequencies are compared with theoretical numbers according to generally accepted rules (Oktaba 1966).Cole’s distribution (1946) is of limited use in studies of the type of distribution of natural plant populations. Elaboration of data using this method is especially troublesome if agglomerations consist of large, varying numbers of individuals. ; Thomas’s model (1949) assumes that agglomerations of individuals are distributed at random and the number of agglomerations per unit area is consistent with numbers in Poisson’s distribution. Thus in the situation described, around paternal plants distributed at random their progeny colonize forming with each paternal plant spatially separate agglomerations. Probability P(X) of finding x individuals on the surface area is illustrated by equation (35).Neyman’s model (1939) in relation to population spatial structure assumes that: (a) individuals occur in groups distributed at random on the surface area and (b) random numbers of individuals in particular agglomerations; thus it is a form of complex Poisson’s distribution. Probability P of finding sample surface with x individuals is calculated using equation (45).It can be expected that the empirical distribution will be consistent with negatively binomial theoretical distribution if the assumptions of Bernouillie’s scheme (Platt 1974) are fulfilled except the one about constant conditions under which the experiment is being carried out. Probability P(X) of finding x individuals on sample surface in the distribution discussed is illustrated by equation (49).In all theoretical models the consistence of empirical distribution with corresponding model of theoretical distribution is checked using test X2 (3). This consistency proves about random distribution of individuals or their agglomerations only in the scale of sample surface area. In order to obtain a true spatial differentiation of population structure it is indispensable to use sample surface of different size when analysing the same object.In studies of spatial sequence of density values good results are obtained using a nonparametric series test for samples taken by means of transect method (Kwiatkowska 1972, Weber 1972).As opposed to statistical methods, for which the most correct is the random sampling scheme, cartographical methods are based on systematical arrangement of samples. Depending on the size of investigated area either the ,,lattice” method is used, where each basic unit is characterized by a determined character value, or the „grid” method (Kwiatkowska and Symonides 1978b). In the first case the place of occurrence of individuals can be shown according to the principle of topographical distribution obtaining the so-called one weight or muiti- weight pointed map (Figs. 1, 2), or according to the principle of cartogramic distribution obtaining the so-called cartogram (Fig. 3). In the grid method only chosen „points” of space forming a system of regular sexpartites, or more frequently shifted squares, are taken into consideration (Fig. 4a) and the final effect of cartographic elaboration is the so-called interpolation map (Fig. 4b). The extent to what this map is detailed depends on the density of measurement points and also on the number of intervals into which the range of variable is divided.Cartographical methods illustrate spatial relations between individuals and their agglomerations and frequently allow to estimate the type of spatial structure of population. In doubtful cases the nonparametric series test should be additionally applied.
Agnew A. D. Q., Hainer R. W. 1960 — Studies on plant ecology of the Jazira of Central Iraq — I. Bull. Col. Sci. Baghdad, 5: 41—60.
Anderson D. J. 1961a — The structure of some upland plant communities in Caernarvonshire. I. The pattern shown by Pteridium aquilinum — J. Ecol. 49: 369—377.
Anderson D. J. 1961b — The structure of some upland plant communities in Caernarvonshire. II. The pattern shown by Vaccinium myrtillus and Calluna vulgaris — J. Ecol. 49: 731—738.
Archibald E. E. A. 1948 — Plant populations. I. A new application of Neyman’s contagious distribution — Ann. Bot. 12: 221—235.
Archibald E. E. A. 1950 — Plant populations. II. The estimation of the number of individuals per unit area of species heterogenous plant populations — Ann. Bot. 14: 7—21.
Ashby E. 1935 — The quantitative analysis of vegetation — Ann. Bot. 49: 779— 802.
Ashby E., Pidgeon I. M. 1942 — A new quantitative method of analysis of plant communities — Aust. J. Sci. 5: 19.
Barnes H., Stanbury F. A. 1951 — A statistical study of plant distribution during the colonization and early development of vegetation on china clay residues — J. Ecol. 39: 171—181.
Blackman G. E. 1935 — A study by statistical methods of the distribution of species in grassland associations — Ann. Bot. 49: 794—878.
Blackman G. E. 1942 — Statistical and ecological studies in the distribution of species in plant communities. I. Dispersion as a factor in the study of changes in plant populations — Ann. Bot. 6: 351—370.
Bray J. R. 1962 — Use of non-area analytic data to determine species dispersion — Ecology, 43: 328—333.
Brereton A. J. 1971 — The structure of the species populations in the initial stages of salt-marsh-succession — J. Ecol. 59: 321—338.
Catana A. J. 1963 — The wandering quarter method of estimating population density — Ecology, 44: 741—757.
Chapman V. J. 1960 — Salt marshes and salt deserts of the World — Leonard Hill Books Ltd., London, ss. 392.
Clapham A. R. 1936 — Overdispersion in grassland communities and the use of statistical methods in piant ecology — J. Ecol. 24: 232—251.
Clark P. J., Evans F. C. 1954 — Distance to nearest neighbour as a measure of spatial relationships in populations — Ecology, 35: 445—453.
Cole C. 1946 — A theory for analysing contagiously distributed populations — Ecology, 27: 329—341.
Cottam G., Curtis J. T. 1956 — The use of distance measures in phytosociological sampling — Ecology, 37: 451—460.
Cottam G., Curtis J. T., Halle B. W. 1953 — Some sampling characteristics of a population of randomly dispersed individuals — Ecology, 34: 741—747.
Curtis J. T., McIntosh R. P. 1950 — The interrelation of certain analytic and synthetic phytosociological characters — Ecology, 31: 434—455.
David F. N., Moore P. G. 1954 — Notes on contagious distributions in plant populations — Ann. Bot. 18: 47—53.
Dice L. R. 1952 — Measure of the spacing between individuals within a population — Centr. Lab. vertebr. Biol. Univ. Mich. 55: 1—23.
Evans F. C. 1952 — The influence of size of quadrat on the distributional patterns of plant populations — Contr. Lab. vertebr. Biol. Univ. Mich. 54: 1—15.
Falińska K. 1979 — Populacje roślin w ekotonie — Wiad. ekol. 25: 3—21.
Fracker S., Brischle H. A. 1944 — Measuring the local distribution of Ribes — Ecology, 25: 283—303.
Gleason H. A. 1920 — Some applications of the quadrat method — Bull. Torrey bot. Club, 47: 21—33.
Gounot M. 1962 — Etude de la distribution des especes au moyen d’un test non parametrique — Bull. Serv. Carte phytogeogr. 7: 65—84.
Greig-Smith P. 1952 — The use of random and contiguous quadrats in the study of the structure of plant communities — Ann. Bot. 16: 293—316.
Greig-Smith 1964 — Quantitative plant ecology — Butterworths, London, ss. 256.
Greń J. 1974 — Modele i zadania statystyki matematycznej — PWN, Warszawa, ss. 324.
Hall J. B. 1971 — Pattern in a chalk grassland community — J. Ecol. 59: 749— 762.
Harper J. L. 1977 — Populations biology of plants — Academic Press, London, New York, San Francisco, ss. 896.
Harper J. L., Williams J. T., Sagar G. R. 1965 — The behaviour of seeds in soil. I. The heterogenity of soil surfaces and its role in determining the establishment of plants from seed — J. Ecol. 53: 273—286.
Holgate P. 1965a — Tests of randomness based on distance method — Biometri- ka, 52: 345—356.
Holgate P. 1965b — Some new tests of randomness — J. Ecol. 53: 261—266.
Hopkins B. 1954 — A new method for determining the type of distribution of plant individuals — Ann. Bot. 18: 213—227.
Jones E. W. 1955 — Ecological studies on the rain forest of southern Nigeria. IV. The plateau forest of the Okomu Forest Reserve — J. Ecol. 43: 564—594.
Jones E. W. 1956 — Ecological studies on the rain forest of southern Nigeria. IV. The plateau forest of the Okomu Forest Reserve — J. Ecol. 44: 83—117.
Kershaw K. A. 1958 — An investigation of the structure of a grassland community. I. The pattern of Agrostis tenuis — J. Ecol. 46: 571—592.
Kershaw K. A. 1959 — An investigation of the structure of a grassland community. II. The pattern of Dactylis glomerata, Lolium perenne and Trifolium repens. III. Discussion and conclusions — J. Ecol. 47: 31—53.
Kershaw K. A. 1973 — Quantitative and dynamic plant ecology — Edward Arnold (Publishers Limited), London, ss. 308.
Kershaw K. A., Tallis J. H. 1958 — Pattern in the high level Juncus squarrosus community — J. Ecol. 46: 739—748.
Kocimowski K., Kwiatek J. 1976 — Wykresy i mapy statystyczne — Główny Urząd Statystyczny, Warszawa, ss. 142.
Kwiatkowska A. J. 1972 — Analiza homogeniczności runa fitocenozy przy zastosowaniu nieparametrycznego testu serii — Phytocoenosis, 1: 37 —77.
Kwiatkowska A. J., Symonides E. 1978a — Metody pomiaru zagęszczenia populacji roślin wyższych — Wiad. ekol. 24: 127—143.
Kwiatkowska A. J., Sy monides E. 1978b — Some remarks on the methods of assessing the population density of higher plants in cases of aggregated spatial structure — Acta Soc. Bot. Pol. 47: 91—106.
Kwiatkowska A. J., Symonides E. 1979 — Wpływ skupiskowej struktury przestrzennej na ocenę zagęszczenia populacji roślinnych — Wiad. ekol. 25: 37—46.
MacArthur R. H., Connell J. H. 1971 — Biologia populacji — PWRiL, Warszawa, ss. 232.
Moore P. G. 1953 — A test for non-randomness in plant populations — Ann. Bot. 17: 57—62.
Morisita M. 1959 — Measuring the dispersion of individuals and analysis of the distributional patterns — Mem. Fac. Sci. Kuyshu Univ. Ser. E (biol.) 2: 215—235.
Neyman J. 1939 — On a new class of „contagious” distributions, applicable in entomology and bacteriology — Ann. math. Statist. 10: 35—57.
Numata M. 1949 — The basis of sampling in the statistics of plant communities. Studies on the structure of plant communities. Ill — Bot. Mag., Tokyo, 62: 35—38.
Numata M. 1954 — Some special aspects of the structural analysis of plant communities — J. Coll. Arts Sci. Chiba Univ. 1: 194—202.
Oktaba W. 1966 — Elementy statystyki matematycznej i metodyki doświadczalnictwa — PWN, Warszawa, ss. 310.
Perkal J. 1967 — Matematyka dla przyrodników i rolników. II — PWN, Warszawa, ss. 314.
Phillips M. E. 1954 — Studies in the quantitative morphology and ecology of Eriophorum angustifolium Roth. II. Competition and dispersion — J. Ecol. 42: 187—210.
Pielou E. C. 1959 — The use of point-to-plant distances in the study of the pattern of plant populations — J. Ecol. 47: 607—613.
Pielou E. C. 1974 — Population and community ecology. Principles and methods — Gordon and Breack Science Publishers, New York, Paris, London, ss. 424.
Platt C. 1974 — Problemy rachunku prawdopodobieństwa i statystyki matematycznej — PWN, Warszawa, ss. 381.
Quenouille M. H. 1949 — A relation between the logarythmic, Poisson and negative binomial series — Biometrics, 5: 162—164.
Rabotnov T. A. 1964 — Opredelenie vozrastnogo sostava populacii vidov v so- obscestve — Polevaja Geobotanika, 3: 132—167.
Salisbury E. J. 1942 — The reproductive capacity of plants — G. Bell and Sons LTD, London, ss. 244.
Singh B. N., Das K. 1939 — Percentage frequency and quadrat size in analitical studies of weed flora — J. Ecol. 27: 66—77.
Skellam J. G. 1952 — Studies in statistical ecology. I. Spatial pattern — Biometrika, 39: 346—362.
Steinhaus H. 1936 — O charakterystyce skupienia osiedli — Czas, geogr. 14: 288—297.
Steinhaus H. 1947 — O wskaźniku zagęszczenia i rozproszenia — Przegl. geogr. 21: 1—3.
Stevens W. L. 1937 — Significance of grouping — Ann. Eugen. 8: 57—69.
Svedberg T. 1922 — Ettbidrag till de statiska metodernas anvanding inorn voxtbiologien — Svensk bot. Tidskr. 16: 1—8.
Symonides E. 1974 — Populations of Spergula vernalis Willd. on dunes in the Toruń Basin — Ekol. pol. 22: 379—416.
Symonides E. 1979a — The structure and population dynamics of psammophytes on inland dunes. I. Populations of initial stages — Ekol. pol. 27: 3—37.
Symonides E. 1979b — The structure and population dynamics of psammophytes on inland dunes. II. Loose-sod populations — Ekol. pol. 27: 191—234.
Symonides E. 1979c — The structure and population dynamics of psammophytes on inland dunes. III. Populations of compact psammophyte communities — Ekol. pol. 27: 235—257.
Thomas M. 1949 — A generalization of Poisson’s binomial limit for use in ecology — Biometrika, 36: 258—284.
Vasilevic V. I. 1969 — Statistićeskie metody v geobotanike — Akad. Nauk SSSR, Leningrad, ss. 230.
Walter H. 1962 — Die Vegetation der Erde in okologischer Betrachtung. I. Die tropischen and subtropischen Zonen — VEB Gustav Fischer Verlag, Jena, ss. 162.
Watt A. S. 1955 — Bracken versus heather, a study in plant sociology — J. Ecol. 43: 490—506.
Wilkoń-Michalska J. 1976 — Struktura i dynamika populacji Salicornia patula Duval-Jouve — Rozpr. Uniw. Mikołaja Kopernika, Toruń, ss. 156.
Wilkoń-Michalska J., Symonides E. 1974 — The influence of vegetation on the dynamics of soil humidity in the patch of Spergulo-Corynephoret.um Tx. (1928) Libb. (1933) — Fragm. flor, geobot. 20: 497—528.
Weber E. 1972 — Grundriss der biologischen Statistik — Gustav Fischer Verl., Jena, ss. 706.
Whitford P. B. 1949 — Distribution of woodland plants in relation to succession and clonal growth — Ecology, 30: 199—208.
Zieliński R. 1972 — Tablice statystyczne — PWN, Warszawa, ss. 386.
Zinke P. J. 1962 — The pattern of individual forest trees on soil properties — Ecology, 43: 130—133.
oai:rcin.org.pl:189190 ; ISSN 0013-2969
Licencja Creative Commons Uznanie autorstwa 3.0 Polska
Zasób chroniony prawem autorskim. [CC BY 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -
Muzeum i Instytut Zoologii Polskiej Akademii Nauk
Biblioteka Muzeum i Instytutu Zoologii PAN
Feb 4, 2022
May 13, 2021
86
https://rcin.org.pl./publication/140723
Edition name | Date |
---|---|
Z. 1. Przegląd metod oceny typu rozkładu przestrzennego populacji roślinnych / Kwiatkowska A.J., Symonides E. | Feb 4, 2022 |
Kierych, Eugeniusz (1936– )
Kwiatkowska, Anna Justyna Symonides, Ewa
Szafer, Władysław (1886–1970)
Pfeffer, Wilhelm (1845–1920)
Kwiatkowska, Anna Justyna Symonides, Ewa
Flahault, Charles Marie Henri (1852–1935)