Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Geographia Polonica Vol. 89 No. 1 (2016)
The avalanches represent a significant and very dynamic process within the Tatra high-mountain landscape. Undoubtedly avalanche run-out distances play a key role in land use planning within avalanche prone areas. The Žiarska valley and Predné Meďodoly valley are considered as one of the most avalanche prone valleys in Tatra Mts. This environment represents an excellent opportunity for studying and modelling extreme avalanche run-outs. Primarily avalanche release zones were estimated by using an existing model proposed by Hreško (1998). This model was modified and calibrated for both valleys. The alpha-beta regression model developed in Norway has been used to estimate avalanche run-outs. Data processing and model calibration have been elaborated in GIS environment. Avenue script for ArcGIS was written to perform automated runout estimation based on alpha-beta regression model. Model managed to estimate run-outs on some slopes while it failed to model run-ups. Finally the results were visualized by creating the fly-through simulations and 3D views. Comparison between model calculation and avalanche cadastre showed correlation.
1. Barka I., 2003. Identification of snow avalanche trigger areas and avalanche paths by the GIS. Geomorphologia Slovaca, vol. 3, no. 2, pp. 60-63.
2. Barka I., Rybár R., 2003. Identification of snow avalanche trigger areas using GIS. Ecology, vol. 22, suppl. 2, pp. 182-194.
3. Bebi P., Kienast F., Schonenberger W., 2001. Assessing structures in mountain forests as a basis for investigating the forests' dynamics and protective function. Forest Ecology and Management, vol. 145, no. 1-2, pp. 3-14.
http://dx.doi.org/10.1016/S0378-1127(00)00570-3 -
4. BOLTIŽIAR M., 2007. Structure of the Tatra high mountain (large scale mapping, analysis and evaluation of changes by application of remote sensing data). Nitra: Fakulta prírodných vied Univerzity Konštantína Filozofa, Ústav krajinnej ekológie SAV Bratislava, Pobočka Nitra, Slovenský národný komitét pre program UNESCO Človek a biosféra.
5. Bovis M., Mears A., 1976. Statistical prediction of snow avalanche run-out from terrain variables in Colorado. Arctic and Alpine Research, vol. 8, no. 1, pp. 115-120.
http://dx.doi.org/10.2307/1550615 -
6. Delparte D., 2008. Avalanche terrain modeling in Glacier National Park, Canada. Calgary: University of Calgary [PhD thesis].
7. Fujisawa K., Tsunaki R., Kamiishi I., 1993. Estimating snow avalanche run out distances from topographic data. Annals of Glaciology, 18, pp. 239-244.
8. Furdada G., Vilaplana J.M., 1998. Statistical predication of maximum avalanche run-out distances from topographic data in the western Catalan Pyrenees (northeast Spain). Annals of Glaciology, 26, pp. 285-288.
9. Hreško J., 1998. Avalanche hazard of the Tatra high mountain landscape. Folia Geographica, 2, Prešov: Prešovská univerzita, pp. 348-352.
10. Hreško J., Boltižiar M., 2001. The influence of the morphodynamic processes to landscape structure in the high mountains (Tatra Mts.). Ekológia, vol. 20, suppl. 3, pp. 141-148.
11. Hreško J., Bugár G., 1999. Avalanche risk of the SE part of Belianske Tatra Mts [in:] T. Hrnčiarová, Z. Izakovičová (eds.), Krajinnoekologické plánovanie na prahu 3. Tisícročia, Bratislava: Ústav krajinnej ekológie SAV, pp. 268-269.
12. JOHANNESSON T., 1998. A topographical model for Icelandic avalanches. Reykjavik: Icelandic Meteorological Office Report Vi-G980003-UR03.
13. Jones A., Jamieson B., 2004. Statistical avalanche runout estimation for short slopes in Canada. Annals of Glaciology, vol. 38, no. 1, pp. 363-372.
http://dx.doi.org/10.3189/172756404781814960 -
14. Kňazovický L., 1967. Avalanches. Bratislava: Vydavateľstvo SAV.
15. Kohút F., 2005. Natural processes in high mountain landscape – Jalovecká valley. Nitra: University of Constantine the Philosopher [PhD thesis].
16. Lempa M., Kaczka R.J., Rączkowska Z., 2014. Rekonstrukcja aktywności lawin śnieżnych w Białym Żlebie (Tary Wysokie) na podstawie przyrostów rocznych świerka pospolitego (Picea abies L. Karst.). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, vol. 16, no. 3, pp. 105-112.
17. Lied K., Bakkehoi S., 1980. Empirical calculation of snow-avalanche run-out distance based on topographic parameters. Journal of Glaciology, vol. 26, no. 94, pp. 165-177.
18. Lied K., Weiler C., Bakkehøi S., Hopf J., 1995. Calculation methods for avalanche run-out distance for the Austrian Alps [in:] F. Sivardière (ed.), The contribution of scientific research to safety with snow, ice and avalanche. Grenoble: Association nationale pour l'étude de la neige et des avalanches, ANENA, pp. 63-68.
19. Maggioni M., Gruber U., 2003. The influence of topographic parameters on avalanche release dimension and frequency. Cold Regions Science and Technology, vol. 37, no. 3, pp. 407-419.
http://dx.doi.org/10.1016/S0165-232X(03)00080-6 -
20. Mitášová H., Hofierka J., 1993. Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Mathematical Geology, vol. 25, no. 6, pp. 657-667.
http://dx.doi.org/10.1007/BF00893172 -
21. Rączkowska Z., Długosz M., Kaczka R., Kalafarski M., Rojan E., 2013. Geomorphological aspects of snow avalanche activity in the Polish Tatras. Geomorphologia Slovaca et Bohemica, vol. 13, no. 1, pp. 67-68.
22. Rączkowska Z., Długosz M., Gądek B., Grabiec M., Kalafarski M., Rojan E., 2014. Environmental conditions, dynamic and multiproxy records of snow avalanches in the Tatra Mts [in:] IGU 2014 Book of Abstracts, Kraków: IGU, pp. 1.
23. Rojan E., Rączkowska Z., Kalafarski M., Długosz M., Kaczka R., Gądek B., 2013. Avalanches in relation to relief of the Tatra Mountains [in:] Geomorphology and Sustainability. Paris, 27-31 August 2013. 8th International Conference (AIG) on Geomorphology. Abstracts volume, p. 1066.
24. Sitko R., 2008. Identification, classification and assessment of forest function with the use of geoinformatics. Zvolen: Technical University [PhD thesis].
25. Toppe R., 1987. Terrain models: A tool for natural hazard mapping [in:] B. Salm, H. Gubler (eds.), Avalanche formation, movements and effects (Proceedings of the Davos Symposium, September 1986), International Association of Hydrological Sciences (IAHS), no. 162, pp. 629-638.
Rozmiar pliku 2 MB ; application/pdf
oai:rcin.org.pl:58257 ; 0016-7282 ; 10.7163/GPol.0047
CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Licencja Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska
Zasób chroniony prawem autorskim. [CC BY-ND 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -
Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R
Mar 25, 2021
Mar 29, 2016
1522
https://rcin.org.pl./publication/78455
Nieścioruk, Kamil
Bucała-Hrabia, Anna
Prokop, Paweł
Ławniczak, Agnieszka E. Kutyła, Sebastian
Kulczyk, Sylwia Woźniak, Edyta Kowalczyk, Małgorzata Derek, Marta
Czerniec, Jerzy Kozioł, Krystian Misiewicz, Krzysztof
Poscetti, Valeria Zotti, Georg Neubauer, Wolfgang