Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Geographia Polonica Vol. 88 No. 3 (2015)
Analysis of high resolution remote sensing images, included in the object-oriented approach, involved classifying the image objects according to class descriptions organised in an appropriate knowledge base. This technique is created by means of inheritance mechanisms, concepts, and methods of fuzzy logic and semantic modeling. The process of the object oriented classification mainly involved two sections: multiresolution segmentation and image classification. Multiresolution segmentation is a new procedure for image object extraction. It allows the segmentation of an image into a network of homogeneous image regions at any chosen resolution. These image object primitives represent image information in an abstract form, serving as building blocks and information carries for subsequent classification. A study was taken up to perform object oriented fuzzy classification using high resolution satellite data (Cartosat-1 fused with IRS-1C, LISS IV data) for automatic building extraction in the study area covering the administrative area of BHEL (Bharat Heavy Electrical Limited) colony, Haridwar, Uttrakhand (India). The study area was located at 29°56’55.51”N to 29°56’11.49”N latitude and 78°05’42.45”E to 78°07’00.09”E longitude. Two approaches were used: applying different spatial filters, and object orientation. The merged image is filtered using different high pass filters, such as: Kirsch, Laplace, Prewitt, Sobel, and Canny filtered images. The overall accuracy of the classified image was 0.93, and Kappa accuracy was 0.89. The produced accuracy for buildings, vegetation, and shadows were 0.9545, 1.0, and 0.8888, respectively, whereas user accuracy for buildings vegetation, and shadows were 1.0, 0.9375, and 1.0, respectively. Overall classification accuracy was based on TTA mask (training and test area mask) and it was 0.97. Kappa accuracy was 0.95.
1. Agouris P., Gyftakis S., Stefanidis A., 1998. Using a fuzzy supervisor for object extraction within an integrated geospatial environment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 32, part 3, pp. 191-195.
2. Baltsavias E.P., 1999. A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 54, no. 2-3, pp. 83-94.
http://dx.doi.org/10.1016/S0924-2716(99)00014-3 -
3. Benediktsson J.A., Pesaresi M., Amason K., 2003. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 9, pp. 1940-1949.
http://dx.doi.org/10.1109/TGRS.2003.814625 -
4. Blaschke T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 65, no. 1, pp. 2-16.
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004 -
5. Bruzzone L., Mingmin C., Marconcini M., 2006. A novel transductive SVM for Semi-supervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, pp. 3363-3373.
http://dx.doi.org/10.1109/TGRS.2006.877950 -
6. BURNETT C., BLASCHKE T., 2002. Objects / notobjects and near-decomposability: ecosystems and GI [in:] M.J. Egenhofer, D.M. Mark (eds.), Geographic Information Science: Second international conference, GIScience 2002, Boulder, CO, USA, September 25-28, 2002: Proceedings, Berlin-New York: Springer, pp. 225-229.
7. Bückner J., 1998. Model based road extraction for the registration and interpretation of remote sensing data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 32, part 4, pp. 85-90.
8. Chang K.-T., 2007. Introduction to geographic information systems. New York: McGraw-Hill.
9. Chaudhuri D., Kushwaha N.K., Samal A., 2012. Semi-Automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 5, pp. 1538-1544.
http://dx.doi.org/10.1109/JSTARS.2012.2199085 -
10. Chen T. (ed.), 1998. The past, present and future of image and multidimensional signal processing, IEEE Signal Processing Magazine, vol. 15, pp. 21-58.
http://dx.doi.org/10.1109/79.689583 -
http://dx.doi.org/10.1109/79.664673 -
11. Dell'Acqua F., Gamba P., 2007. Spectral Resolution in the Context of Very High Resolution Urban Remote Sensing [in:] Q. Weng, D. Quattrochi (eds.), Urban Remote Sensing. Boca Raton, FL: CRC/Taylor & Francis, pp. 377-391.
12. Ding M.L., Li G.Y., Zhang Q.F., 2010. Application of road extraction in satellite images based on snakes model. Computer Technology and Development, vol. 1, no. 1, pp. 71-73.
13. Foresti G.L., Pellegrino F.A., 2004. Automatic visual recognition of deformable objects for grasping and manipulation. IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications and Reviews, vol. 34, no. 3, pp. 325-333.
http://dx.doi.org/10.1109/TSMCC.2003.819701 -
14. Gonzalez R.C., Woods R.E., 2002. Digital image processing. Upper Saddle River: Prentice Hall.
15. Gruen A., 2008. Reality-based generation of virtual environments for digital earth. International Journal of Digital Earth, vol. 1, no. 1, pp. 88-106.
http://dx.doi.org/10.1080/17538940701782585 -
16. GUPTA N., BHADAURIA H.S., 2014. Object based Information Extraction from High Resolution Satellite Imagery using eCognition. IJCSI International Journal of Computer Science Issues, vol. 11, no. 3/2, pp. 139-144.
17. HAY G.J., CASTILLA G., 2008. Geographic object-based image analysis (GEOBIA): A new name for a new discipline [in:] T. Blaschke, S. Lang, G.J. Hay (eds.), Object-Based Image Analysis, Berlin-Heidelberg: Springer, pp. 75-89.
18. Hu X.Y., Zhang Z.X., Zhang J.Q., 2002. Semiautomatic extraction of linear object from aerial image. Journal of Image and Graphics, vol. 7, no. 2, pp. 137-140.
19. Huertas A., Nevatia R., 1988. Detecting buildings in aerial images. Computer Vision, Graphics, and Image Processing, vol. 41, no. 2, pp. 131-152.
http://dx.doi.org/10.1016/0734-189X(88)90016-3 -
20. Itti L., Koch C., 2001. Computational modelling of visual attention. Nature Reviews. Neuroscience, vol. 2, no. 3, pp. 194-203.
http://dx.doi.org/10.1038/35058500 -
21. Jensen J.R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River: Prentice Hall.
22. Jeon B.K., Jang J.H., Hong K.S., 2002. Road detection in spaceborne SAR images using a genetic algorithm. IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 1, pp. 22-29.
http://dx.doi.org/10.1109/36.981346 -
23. Kettig R.L., Landgrebe D.A., 1976. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics, vol. 14, no. 1, pp. 19-26.
http://dx.doi.org/10.1109/TGE.1976.294460 -
24. Kim Z., Nevatia R., 1999. Uncertain reasoning and learning for feature grouping. Computer Vision and Image Understanding, vol. 76, no. 3, pp. 278-288.
http://dx.doi.org/10.1006/cviu.1999.0803 -
25. KWAK E., AL-DURGHAM M., HABIB A., 2012. Automatic 3D building model generation from Lidar and image data using sequential minimum bounding rectangle. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 39-B3, pp. 285-290.
26. Lee D.S., Shan J., Bethel J.S., 2003. Class-guided building extraction from Ikonos imagery. Photogrammetric Engineering & Remote Sensing, vol. 69, no. 2, pp. 143-150.
http://dx.doi.org/10.14358/PERS.69.2.143 -
27. Lhomme S., He D.-C., Morin D., 2004. Évaluation de la qualité d'une image Ikonos pour l'identification du bâti en milieu urbain. Télédétection, vol. 3, no. 5, pp. 457-466.
28. Lin C., Nevatia R., 1998. Building detection and description from a single intensity image. Computer Vision and Image Understanding, vol. 72, no. 2, pp. 101-121.
http://dx.doi.org/10.1006/cviu.1998.0724 -
29. Lucchese L., Mitra S.K., 2001. Color image segmentation: A state-of-the-art survey. Proceedings of the Indian National Science Academy, vol. 67A, no. 2, pp. 207-221.
30. MATIKAINEN L., HYYPPÄ J., AHOKAS E., MARKELIN L., KAARTINEN H., 2009. An improved approach for automatic detection of changes in buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, part 3-W8, pp. 61-67.
31. MAYER H., LAPTEV I., BAUMGARTNER A., STEGER C., 1997. Automatic road extraction based on Multi-Scale modeling, context, and snakes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 32, part 3-2W3, pp. 106-113.
32. PAL N.R., PAL S.K., 1993. A review on image segmentation techniques. Pattern Recognition, vol. 26, no. 9, pp. 1277-1294.
http://dx.doi.org/10.1016/0031-3203(93)90135-J -
33. PANDEY A.K., 2004. Automatic urban road extraction using airborne laser scanning – altimetry and high resolution satellite data. Enschede: ITC (M.Sc. Thesis).
34. Pigeon L., Solaiman B., Toutin T., Thomson K.P.B., 2001. Linear planimetric feature domains modeling for multisensors fusion in remote sensing. Proceedings of SPIE, Sensor Fusion: Architectures, Algorithms, and Applications IV, vol. 4051, pp. 8.
35. Puissant A., Weber C., 2002. The utility of very high spatial resolution images to identify urban objects. Geocarto International, vol. 17, no. 1, pp. 33-43.
http://dx.doi.org/10.1080/10106040208542223 -
36. Rizvi I.A., Mohan B.K., 2010. Object-oriented method for automatic extraction of road from High Resolution Satellite Images. Iranian Journal of Earth Sciences, vol. 2, no. 1, pp. 55-62.
37. ROTTENSTEINER F., 2012. Advanced methods for automated object extraction from LiDAR in urban areas. IEEE International Geoscience and Remote Sensing Symposium. Proceedings, 22-27 July 2012, Munich, pp. 5402-5405.
http://dx.doi.org/10.1109/igarss.2012.6352385 -
38. Segl K., Kaufmann H., 2001. Detection of small objects from high-resolution panchromatic satellite imagery based on supervised image segmentation, IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 9, pp. 2080-2083.
http://dx.doi.org/10.1109/36.951105 -
39. Shan J., Lee S.D., 2002. Generalization of building polygons extracted from IKONOS imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 34, part 4, pp. 297-304.
40. TARSHA-KURDI F., LANDES T., GRUSSENMEYER P., 2007. Hough-transform and extended Ransac algorithms for automatic detection of 3D building roof planes from Lidar data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, part 3-W52, pp. 407-412.
41. Teng X., Song S., Zhan Y., 2014. A Novel Road Extraction Algorithm for High Resolution Remote Sensing Images. Applied Mathematics & Information Sciences, vol. 8, no. 3, pp. 1435--1443.
http://dx.doi.org/10.12785/amis/080361 -
42. Tseng Y.-H., Wang S., 2003. Semiautomated building extraction based on CSG model-image fitting. Photogrammetric Engineering & Remote Sensing, vol. 69, no. 2, pp. 171-180.
http://dx.doi.org/10.14358/PERS.69.2.171 -
43. Tupin F., Houshmand B., Datcu M., 2002. Road detection in dense urban areas using SAR imagery and the usefulness of multiple views. IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 11, pp. 2405-2414.
http://dx.doi.org/10.1109/TGRS.2002.803732 -
44. Uzar M., 2014. Automatic building extraction with multi-sensor data using rule-based classification. European Journal of Remote Sensing, vol. 47, no. 8, pp. 1-18.
http://dx.doi.org/10.5721/EuJRS20144701 -
45. Zhang C., Murai S., Baltsavias E., 1999. Road network detection by mathematical morphology. Proceedings of ISPRS Workshop "3D Geospatial Data Production: Meeting Application Requirements", Zurich: Institute of Geodesy and Photogrammetry, pp. 185-200.
Rozmiar pliku 3,5 MB ; application/pdf
oai:rcin.org.pl:56788 ; 0016-7282 ; 10.7163/GPol.2015.26
CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Licencja Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska
Zasób chroniony prawem autorskim. [CC BY-ND 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -
Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R
Mar 25, 2021
Oct 29, 2015
1854
https://rcin.org.pl./publication/77356
Edition name | Date |
---|---|
Shrivastava N., Rai P. K. - Automatic building extraction based on multiresolution segmentation using remote sensing data | Mar 25, 2021 |
De Smedt, Philippe Delefortrie, Samuël Van Meirvenne, Marc
Bun, Rostyslav Charkovska, Nadiya Danylo, Olha Horabik-Pyzel, Joanna Jonas, Matthias Nahorski, Zbigniew (1945– ) Xiangyang, Xu