• Wyszukaj w całym Repozytorium
  • Piśmiennictwo i mapy
  • Archeologia
  • Baza Młynów
  • Nauki przyrodnicze

Szukaj w Repozytorium

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Piśmiennictwo i mapy

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Archeologia

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Baza Młynów

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Szukaj w Nauki przyrodnicze

Jak wyszukiwać...

Wyszukiwanie zaawansowane

Projekty RCIN i OZwRCIN

Obiekt

Tytuł: Factors inhibiting convection under conditions of extreme atmospheric instability

Twórca:

Palarz, Angelika ; Celiński-Mysław, Daniel

Data wydania/powstania:

2017

Typ zasobu:

Tekst

Inny tytuł:

Geographia Polonica Vol. 90 No. 1 (2017)

Wydawca:

IGiPZ PAN

Miejsce wydania:

Warszawa

Opis:

24 cm

Instytucja nadająca tytuł:

convection inhibition ; atmospheric instability indices ; Poland ; upper air sounding

Typ obiektu:

Czasopismo/Artykuł

Abstrakt:

The paper identifies mechanisms that potentially inhibit convection at a time when extreme values of selected atmospheric instability indices are recorded. The study involved six indices (LI, SI, CAPE, KI, SWEAT, TTI). Data sources involved records from three Polish data stations collecting upper air soundings and covered the period 2005-2014. Additional data were obtained from SYNOP codes on present and past weather and reports on severe meteorological phenomena from the European Severe Weather Database. The methodology adopted allowed the selection of 26 cases where no convective phenomena were observed despite extreme atmospheric instability. A detailed analysis demonstrated that the occurrence of isothermal or inversion layers in the lower and middle troposphere were the most frequent mechanisms inhibiting the vertical air movement. Convection was also inhibited when the area was free from the influence of atmospheric fronts, convergence zones, lowpressure troughs or when high altitudes of LCL occurred.

Bibliografia:

1. Bentley M.L., Mote T.L., 2000. A synoptic climatology of cool-season derecho events. Physical Geography, vol. 21, no. 1, pp. 21-37.
2. Blanchard D.O., 1998. Assessing the vertical distribution of Convective Available Potential Energy. Weather and Forecasting, vol. 13, no. 3, pp. 870-877.
https://doi.org/10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2 -
3. Brooks H.E., 2009. Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmospheric Research, vol. 93, no. 1-3, pp. 546-553.
https://doi.org/10.1016/j.atmosres.2008.10.005 -
4. Brooks H.E., Anderson A.R., Riemann K., Ebbers I., Flachs H., 2007. Climatological aspects of convective parameters from the NCAR/NCEP reanalysis. Atmospheric Research, vol. 83, no. 2, pp. 294-305.
https://doi.org/10.1016/j.atmosres.2005.08.005 -
5. Brooks H.E., Lee J.W., Craven J.P., 2003. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmospheric Research, vol. 67-68, pp. 73-94.
https://doi.org/10.1016/S0169-8095(03)00045-0 -
6. Burke P.C., Schultz D.M., 2004. A 4-yr climatology of cold-season bow echoes over the continental United States. Weather and Forecasting, vol. 19, no. 6, pp. 1061-1073.
https://doi.org/10.1175/811.1 -
7. Chaboureau J.-P., Guichard F., Redelsperger J.-L., Lafore J.-P., 2004. The role of stability and moisture in the diurnal cycle of convection over land. Quarterly Journal of the Royal Meteorological Society, vol. 130, no. 604, pp. 3105-3117.
https://doi.org/10.1256/qj.03.132 -
8. Davies J.M., 2004. Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Weather and Forecasting, vol. 19, no. 4, pp. 714-726.
https://doi.org/10.1175/1520-0434(2004)019<0714:EOCALA>2.0.CO;2 -
9. Derbyshire S.H., Beau I., Bechtold P., Grandpeix J.P., Piriou J.M., Redelspreger J.L., Soares P.M. M., 2004. Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, vol 130, pp. 3055–3080.
https://doi.org/10.1256/qj.03.130 -
10. Derubertis D., 2006. Recent trends in four common stability indices derived from U.S. radiosonde observations. Journal of Climate, vol. 19, no. 3, pp. 309-323.
https://doi.org/10.1175/JCLI3626.1 -
11. Galway J.G., 1956. The lifted index as a predictor of latent instability. Bulletin of the American Meteorological Society, vol. 37, pp. 528-529.
12. George J.J., 1960. Weather forecasting for aeronautics. New York-London: Academic Press.
13. Gubenko I.M., Rubinshtein K.G., 2015. Analysis of the results of thunderstorm forecasting based on atmospheric instability indices using the WRFARW numerical model data. Russian Meteorology and Hydrology, vol. 40, no. 1, pp. 16-24.
https://doi.org/10.3103/S1068373915010033 -
14. Hand W.H., Cappelutti G., 2011. A global hail climatology using the UK Met Office convection diagnosis procedure (CDP) and model analyses. Meteorological Applications, vol. 18, no. 4, pp. 446-458.
https://doi.org/10.1002/met.236 -
15. Khodayar S., Kalthoff N., Wickert J., Cormeier U., Morcrette C.J., Kottmeier C., 2010. The increase of spatial data resolution for the detection of the initiation of convection. A case study from CSIP. Meteorologische Zeitschrift, vol. 19, no. 2, pp. 179-198.
https://doi.org/10.1127/0941-2948/2010/0439 -
16. Miller R.C., 1972. Notes on analysis and severestorm forecasting procedures of the Air Force Global Weather Central. Scott Air Force Base, IL.
17. Moncrieff M.W., Miller M.J., 1976. The dynamics and simulation of tropical cumulonimbus and squall-lines. Quarterly Journal of the Royal Meteorological Society, vol. 102, no. 432, pp. 373-394.
https://doi.org/10.1002/qj.49710243208 -
18. Palencia C., Giaiotti D., Stel F., Castro A., Fraile R., 2010. Maximum hailstone size: Relationship with meteorological variables. Atmospheric Research, vol. 96, no. 2-3, pp. 256-265.
https://doi.org/10.1016/j.atmosres.2009.08.011 -
19. Riemann-Campe K., Fraedrich K., Lunkeit F., 2009. Global climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 reanalysis. Atmospheric Research, vol. 93, no. 1-3, pp. 534-545.
https://doi.org/10.1016/j.atmosres.2008.09.037 -
20. Romero R., Gaya M., Doswell C.A., 2007. European climatology of severe convective storm environmental parameters: A test for significant tornado events. Atmospheric Research, vol. 83, no. 2-4, pp. 389-404.
https://doi.org/10.1016/j.atmosres.2005.06.011 -
21. Sanchez J.L., Marcos J.L., Dessens J., Lopez L., Bustos C., Garcia-Ortega E., 2009. Assessing sounding-derived parameters as storm predictors in different latitudes. Atmospheric Research, vol. 93, no. 1-3, pp. 446-456.
https://doi.org/10.1016/j.atmosres.2008.11.006 -
22. Sherburn K.D., Parker M.D., 2014. Climatology and ingredients of significant severe convection in High-Shear, Low-CAPE environments. Weather and Forecasting, vol. 29, no. 4, pp. 854-877.
https://doi.org/10.1175/WAF-D-13-00041.1 -
23. Showalter A.K., 1953. A stability index for thunderstorm forecasting. Bulletin of the American Meteorological Society, vol. 34, no. 6, pp. 250-252.
24. Siedlecki M., 2009. Selected instability indices in Europe. Theoretical and Applied Climatology, vol. 96, no. 1-2, pp. 85-94.
https://doi.org/10.1007/s00704-008-0034-4 -
25. Stirling A.J., Petch J.C., 2004. The impacts of spatial variability on the development of convection. Quarterly Journal of the Royal Meteorological Society, vol. 130, pp. 3189–3206.
https://doi.org/10.1256/qj.03.137 -
26. Van Den Broeke M.S., Schultz D.M., Johns R.H., Evans J.S., Hales J.E., 2005. Cloud-to-ground lighting production in strongly forced, low instability convective lines associated with damaging wind. Weather and Forecasting, vol. 20, no. 4, pp. 517-530.
https://doi.org/10.1175/WAF876.1 -
27. Venkat Ratnam M., Durga Santhi Y., Rajeevan M., Vijaya Bhaskara Rao S., 2013. Diurnal variability of stability indices observed using radiosonde observations over a tropical station: Comparison with microwave radiometer measurements. Atmospheric Research, vol. 124, no. 4, pp. 21-33.
https://doi.org/10.1016/j.atmosres.2012.12.007 -
28. Wong S., Dessler A.E., 2005. Suppression of deep convection over the tropical North Atlantic by the Saharian Air Layer. Geophysical Research Letters, vol. 32, no. 9, pp. 1-4.
https://doi.org/10.1029/2004GL022295 -

Czasopismo/Seria/cykl:

Geographia Polonica

Tom:

90

Zeszyt:

1

Strona pocz.:

39

Strona końc.:

51

Szczegółowy typ zasobu:

Artykuł

Format:

Rozmiar pliku 4,1 MB ; application/pdf

Identyfikator zasobu:

oai:rcin.org.pl:61909 ; 0016-7282 ; 10.7163/GPol.0077

Źródło:

CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; kliknij tutaj, żeby przejść

Język:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa-Na tych samych warunkach 3.0 Polska

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY-SA 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa-Na tych samych warunkach 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R

Dostęp:

Otwarty

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji