Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 89 z. 1 (2017)
Hydrographical mapping carried out by the Author provided for a quantitative evaluation of the distribution of different types of springs located on the homoclinal ridge of Mount Babia Góra – at 1725 m a.s.l., the highest mountain in the Western Carpathians (Fig. 1), built of flysch sediment. Circulation of groundwater on ridge slopes modelled in different ways by landslides was analysed, with particular attention paid to the circulation of water in the deeply-fissured Magura Sandstone that forms the upper part of the massif, as well s the thick cover of colluvia (Figs. 2 and 3). The depth and distance of water circulation on different parts of the slopes were evaluated in relation to altitude, slope exposure, type of flysch rock and landslide topography. Six types of water-bearing sediment were distinguished, and their limits of occurrence identified. Magura Sandstone appeared to be the most water-retaining sediment, proving permeable down to depths of 100 m locally. Three classifications of springs were carried out, in line with geomorphological location (direction of groundwater inflow and means of circulation), type of water-bearing sediment, and local-scale distribution(in connection with landslide forms). Among the 873 springs located in the Polish part of Mt. Babia Góra, over 80% are slope located and can be regarded as descending springs. These include: rock springs (a), rock-debris springs (b), debris springs (c), and rock-mantle springs (d). Other springs occur on valley floors (e) and are also mostly of the descending type, though a few are ascending (mineral and thermal). Most springs are alimented by water flowing out from thick covers of colluvia. Within this group it proved possible to distinguish three subtypes of spring (b2, b3, b4 ) located in different segments of landslides (Fig. 4). Other divisions of springs were into single springs, lines of springs and series of springs (Fig. 5). The number of springs on the slopes of Mt. Babia Góra is similar to the number located at the foot of the mountain comprising lateral ridges and valley floors. Along a profile of altitude, the largest numbers of springs can be seen to be located at the heads of valleys, where the density on the northern slope exceeds 30 per. km-2 (Fig. 6). The density of springs on the southern slope in valleys located at high altitude is even greater. The determined distribution of springs down the altitudinal profile of Mt. Babia Góra allowed for delimitation of three hydrographical belts - of water alimentation, transit and accumulation, which are different from the hydrographical belts noted in the Western Beskidy and Tatra Mountains. The distribution of springs on Mount Babia Góra and their unusually high density are determined first and foremost by the landslide morphology of slopes.
1. Alexandrowicz S.W., 1978, The northern slope of Babia Góra Mt. as a huge rock slump, Studia Geomorphologica Carpatho-Balcanica, 12, s. 133-148.
2. Alexandrowicz Z., Margielewski W., 2010, Impact of mass movements on geo- and biodiversity in the Polish Outer (Flysch) Carpathians, Geomorphology, 123, s. 290-304.
https://doi.org/10.1016/j.geomorph.2010.07.020 -
3. Bober L., Oszczypko N., 1964, Związek między szczelinowatością a zawodnieniem piaskowca magurskiego ze Śnieżnicy (Beskid Wyspowy), Kwartalnik Geologiczny, 8, 3, s. 626-641.
4. Chowaniec J., 2009, Studium hydrogeologii zachodniej części Karpat polskich, Biuletyn PIG, Hydrogeologia, 434, s. 1-98.
5. Corsini A., Cervi F., Ronchetti F., 2009, Weight of evidence and artificial neural network for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy), Geomorphology, 111, s. 79-87.
https://doi.org/10.1016/j.geomorph.2008.03.015 -
6. Geological Atlas of the Western Outer Carpathians and Their Foreland, 1988-1989, Scale: 500 000, Państwowy Instytut Geologiczny, Warszawa.
7. Humnicki W., 2007, Hydrogeologia Pienin, Disertationes, 476, Wyd. Uniwersytetu Warszawskiego, Warszawa.
8. Kleczkowski A., 1991, Źródła i wahania zwierciadła wód podziemnych, [w:] I. Dynowska, M. Maciejewski (red.), Dorzecze górnej Wisły, cz. I, Wydawnictwo Naukowe PWN, Warszawa-Kraków, s. 297-299.
9. Książkiewicz M., 1971, Objaśnienia do szczegółowej mapy geologicznej Polski. Ark. Zawoja, 1:50 000, Instytut Geologiczny, Warszawa.
10. Książkiewicz M., 1983, Zarys geologii Babiej Góry, [w:] K. Zabierowski (red.), Park Narodowy na Babiej Górze. Przyroda i człowiek, Studia Naturae, ser. B, 29, s. 25-39.
11. Lenk T., 1972, Metody badań szczelinowatości skał, Prace Instytutu Naftowego Śląsk", Katowice.
12. Łajczak A., 2004, Wody Babiej Góry, [w:] B.W. Wołoszyn, A. Jaworski, J. Szwagrzyk (red.), Babiogórski Park Narodowy. Monografia przyrodnicza, Babiogórski Park Narodowy, Komitet Ochrony Przyrody PAN, Kraków, s. 153-177.
13. Łajczak A., 2012, Water circulation and chemical denudation within the upper Skawica River flysch catchment, Western Carpathian Mountains, Zeitschrift für Geomorphologie, 56, 1, s. 69-86.
https://doi.org/10.1127/0372-8854/2012/S-00073 -
14. Łajczak A., 2014, Relief development of the Babia Góra massif, Western Carpathians, Quaestiones Geographicae, 33, 1, s. 89-106.
https://doi.org/10.2478/quageo-2014-0006 -
15. Łajczak A., Czajka B., Kaczka R.J., 2014, The new features of landslide relief discovered using LiDAR. Case study from Babia Góra massif, Western Carpathian Mountains, Quaestiones Geographicae, 33, 3, s. 73-84.
https://doi.org/10.2478/quageo-2014-0031 -
16. Małecka D., 1997, Źródła masywu tatrzańskiego, Acta Universitatis Lodziensis, Folia Geographia Physica, 2, s. 9-26.
17. Mapa Hydrograficzna M-34-87-B (Jeleśnia), 2003, Urząd Marszałkowski Województwa Śląskiego, 1:50 000, Geokart – International Sp. z o.o. Rzeszów.
18. Mapa Hydrograficzna M-34-88-A (Zawoja), 2006, Urząd Marszałkowski Województwa Małopolskiego, 1:50 000, Geokart – International Sp. z o.o. Rzeszów.
19. Mikoš M., Brilly M., Fazarinc R., Ribieie M., 2006, Strug landslide in W. Slovenia: A complex multi process phenomenon, Engineering Geology, 83, s. 22-35.
https://doi.org/10.1016/j.enggeo.2005.06.037 -
20. Mocior E., Rzonca B., Siwek J., Plenzler J., Płaczkowska E., Dąbek N., Jaśkowiec B., Potoniec P., Roman S., Zdziebko D., 2015, Determinants of the distribution of springs in the upper part of a flysch ridge in the Bieszczady Mountains in southeastern Poland, Episodes, 38, 1, s. 21-30.
21. Niemirowski M., 1963, Szkic geograficzny obszaru babiogórskiego, [w:] W. Szafer (red.), Babiogórski Park Narodowy, Wydawnictwa Popularnonaukowe Zakładu Ochrony Przyrody PAN, 22, s. 21-43.
22. Ozdemir A., 2011, GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison, Journal of Hydrology, 411, s. 290-308.
https://doi.org/10.1016/j.jhydrol.2011.10.010 -
23. Pawlik-Dobrowolski J., 1965, Uźródłowienie południowej Polski, Zeszyty Naukowe UJ, Prace Geograficzne, 12, s. 7-42.
24. Rajchel L., 1996, Wody siarczkowe w okolicach Lipnicy na Orawie, Chrońmy Przyrodę Ojczystą, 52, 5, s. 50-59.
25. Rauczyńska D., 1967, Wody podziemne szczytowej partii Lubogoszczy, Zeszyty Naukowe UJ, Prace Geograficzne, 16, s. 81-92.
26. Ronchetti F., Borgetti L., Cervi F., Gorgoni C., Piccinini L., Vincenzi V., Corsini A., 2009, Groundwater processes in a complex landslide, northern Apennines, Italy, Natural Hazard and Earth System Sciences, 9, s. 895-904.
https://doi.org/10.5194/nhess-9-895-2009 -
27. Rzonca B., Kołodziej A., Laszczak E., Mocior E., Plenzler J., Płaczkowska E., Rozmus M., Siwek J., Ścisłowicz B., Wójcik S., Ziółkowska L., 2008, Źródła w zlewni górnej Wołosatki w Bieszczadach Wysokich, Przegląd Geologiczny, 56, 8, s. 772-779.
28. Waksmundzki K., 1971, Typologia naturalnych wypływów wody podziemnej w górskich obszarach fliszowych, Przegląd Geograficzny, 43, 3, s. 381-390.
29. Wieser T., Pelczar A., Gucwa I., Mildner Z., Szczurowska J., 1958, Charakterystyka petrograficzna skał serii magurskiej z obszaru Babiogórskiego Parku Narodowego, maszynopis, operat do użytku służbowego, Dyrekcja BgPN, Zawoja.
30. Wit K., Ziemońska Z., 1960, Objaśnienia do mapy hydrograficznej Tatry Zachodnie" 1:50 000, IG PAN, Warszawa.
31. Wit-Jóźwik K., 1974, Objaśnienia do mapy hydrograficznej Tatry Wysokie" 1:50 000, Dokumentacja Geograficzna, 5.
32. Ziemońska Z., 1973, Stosunki wodne w polskich Karpatach Zachodnich, Prace Geograficzne, IG PAN, 103.
File size 1,6 MB ; application/pdf
oai:rcin.org.pl:61804 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2017.1.6
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 3.0 PL license
Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Mar 25, 2021
Mar 9, 2017
3384
https://rcin.org.pl./publication/81101
Łajczak, Adam
Łajczak, Adam Lamorski, Tomasz
Łajczak, Adam Margielewski, Włodzimierz Zielonka, Tomasz Pasierbek, Tomasz Lamorski, Tomasz Kozina, Piotr Izworska, Katarzyna
Kaczka, Ryszard J. Czajka, Barbara Łajczak, Adam
Łajczak, Adam Spyt, Barbara
Kaczka, Ryszard J. Czajka, Barbara Łajczak, Adam Szwagrzyk, Jerzy Nicia, Paweł
Długosz, Michał
Czajka, Barbara Łajczak, Adam Kaczka, Ryszard J.