Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 96 z. 3 (2024)
This paper offers a synthetic account of selected hydrological and physical characteristics of two coastal lakes in Poland, under the apparent influence of changes to be observed in elements of climate. The focus was on those characteristics whose changes can affect lake morphometry and water resources significantly. The two coastal lakes in Poland selected for study were Lakes Gardno and Łebsko, both of which are situated in the area of Słowiński National Park. To achieve the objective, it was necessary to analyse the parameters shaping the lakes’ resources, also as a reflection of their respective positions in the catchment of, and in hydraulic connectivity with, the main drainage base, i.e. that of the Baltic Sea. The parameters characterised were therefore: precipitation, potamic inflow, lake levels and fluctuations in levels, and seaward alimentation. All of these aspects were considered in relation to the 50-year period of 1961‑2010. The study also considered processes occurring in the lake basins themselves (surface changes, shallowing), as well as physical properties of the water (temperature, ice). In the event, it emerged that the work was unable to establish unequivocally the directions in which the two studied lakes could be thought to be evolving. There are nevertheless many indications that the anticipated process of transformation over a geological timescale will be accelerated, resulting in the final (disappearance) stage being reached much faster than would be expected from the natural, harmonic process of ageing of lakes. Leaving aside the fact of human influence in the context, many studied parameters describing the hydrological and physical properties of the two lakes could be regarded as manifesting trends correlated with global warming. On the one hand, the recorded increases in potassium inflows equal to 0.20 m3 ·s-1/10 years (along the River Łupawa) and 0.27 m3 ·s-1/10 years (along the River Łeba), as well as in sea level (equal to 1.6‑1.8 cm/10 years), offer a guarantee of stable water resources forming in the lakes, and should denote increased water levels. In the event, however, the research actually shows the two lakes reacting differently to supply, to the extent that the negative trend for water level in Lake Gardno (of -0.17 cm/10 years) contrasts with the positive one noted for Lake Łebsko (equal to 1.40 cm/10 years). On the other hand, volumes of water retained naturally could be expected to be impaired by observed increases in air temperature – and consequently water temperature, as well as frequently occurring droughts, increased water losses due to evaporation, and unfavourable morphometric features of the lakes. Furthermore, increased supply of sediments by rivers as a consequence of increased flow would be expected to bring about reductions in area, with faster overgrowth taking place. Reed communities at present occupy 4.1% of Lake Gardno and 9.1% of Lake Łebsko. Since 1836, the lakes are estimated to have shrunk by some 237 ha (9.1%) in the case of Lake Gardno, and 546 ha (7.2%) in the case of Lake Łebsko. Meanwhile, positive trends for water temperature in both lakes resulted in a decline in the number of days with ice phenomena over the 50-year study period – from over 100 to just 50‑60.
Balicki, H. (1980). Szkic hydrograficzny zlewni jeziora Gardno. Wiadomości IMiGW, 4, 8‑10.
Baranowski, D. (2008). The climate of Łeba. Baltic Coastal Zone, 12, 75‑84.
Bartosiewicz, M., Ptak, M., Woolway, R., & Sojka, M., (2021). On thinning ice: effects of atmospheric warming, changes in wind speed and rainfall on ice conditions in temperate lakes (Northern Poland). Journal of Hydrology, 597, 125724. https://doi.org/10.1016/j.jhydrol.2020.125724
Biedka, P. (2013). Wpływ zmian temperatury na przebieg procesów związanych z eutrofizacją jezior. Ekonomia i Środowisko, 45(2), 242‑254.
Burchardt, L. (red.). (2005). Ekosystemy wodne Słowińskiego Parku Narodowego. Poznań: Wydawnictwo Naukowe UAM.
Byun, K., Chiu, C.M. & Hamlet, A.F. (2019). Effects of 21st century climate change on seasonal flow regimes and hydrologic extremes over the Midwest and Great Lakes region of the US. Science of The Total Environment, 650(1), 1261‑1277. https://doi.org/10.1016/j.scitotenv.2018.09.063
Chlost, I. (2009). Stany wody a bilans wodny jeziora Łebsko. W: R. Bogdanowicz, J. Fac-Beneda (red.), Zasoby i ochrona wód. Obieg wody i materii w zlewniach rzecznych (p. 211-220). Gdańsk: Wydawnictwo FRUG.
Chlost, I. (2019). Water balance of Lake Gardno. Limnological Review, 19(1), 15‑23. https://doi.org/10.2478/limre-2019-0002
Chlost, I., & Cieśliński, R. (2005). Change of level of waters lake Łebsko. Limnological Review, 5, 17‑26.
Chlost, I., & Sikora, M. (2015). The impact of anthropogenic pressure on the change of water relations in Gardno-Łeba Lowland. Quaestiones Geographicae, 34(3), 17‑31. https://doi.org/10.1515/quageo-2015-0030, ISSN 0137-477X
Choiński, A. (2006). Katalog jezior Polski. Poznań: Wydawnictwo Naukowe UAM.
Choiński, A. (2017). Change of morphometric coastal lakes. W: Obolewski, K. (red.), The ecological status of the southern Baltic coastal lakes (p. 19‑39). Warszawa: PWN.
Choiński, A., & Kaniecki, A. (2004). Plan ochrony Słowińskiego Parku Narodowego. Tom IV: Plan ochrony wód powierzchniowych. Smołdzino (maszynopis).
Choiński, A., & Ptak, M. (2019). Occurrence, genetic types, and evolution of lake basins in Poland. W: E. Korzeniewska, M. Harnisz (red.), Polish river basins and lakes - Part I. The Handbook of Environmental Chemistry (s. 69‑87). Cham: Springer. https://doi.org/10.1007/978-3-030-12123-5_4
Choiński, A., Ptak, M., & Ławniczak, A.E. (2016). Changes in water resources of Polish lakes as influenced by natural and anthropogenic factors. Polish Journal of Environmental Studies, 25(5), 1883‑1890. https://doi.org/10.15244/pjoes/62906
Choiński, A., Ptak, M., Skowron, R. & Strzelczak, A. (2015). Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica, 53, 42‑49. https://doi.org/10.1016/j.limno.2015.05.005
Choiński, A., Ptak, M., & Strzelczak, A. (2012). Examples of lake disappearance as an effect of reclamation. Works in Poland. Limnological Review, 4, 161‑167. https://doi.org/10.2478/v10194-012-0056-2
Choiński, A., Ptak, M., & Strzelczyk, A. (2014). Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast). Oceanological and Hydrobiological Studies, 43(2), 178‑184. https://doi.org/10.2478/s13545-014-0131-1
Cieśliński, R. (2013). Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin). Oceanologia, 55(3), 639‑661. https://doi.org/10.5697/oc.55-3.639
Cieśliński, R. (2018). Changes in hydrological, physical and chemical properties of water in closed/ open coastal lakes due to hydrotechnical structures. Oceanological and Hydrobiological Studies, 47(4); 345 - 358. https://doi.org/10.1515/ohs-2018-0033
Cieśliński, R., Chlost, I., & Budzisz, M. (2016). Water circulation and recharge pathways of coastal lakes along the southern Baltic Sea in northern Poland. Limnological Review, 16(2); 63‑75. https://doi.org/10.1515/limre-2016-0007
Ersoy, Z., Scharfenberger, U., Baho, D.L., Bucak, T., Feldmann, T., Hejzlar, J., Levi, E.E., Mahdy, A., Nõges, T., Papastergiadou, E., Stefanidis, K., Šorf, M., Søndergaard, M., Trigal, C., Jeppesen, E., & Beklioğlu, M. (2020). Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A pan-European mesocosm experiment. Global Change Biology, 26, 6831‑6851. https://doi.org/10.1111/gcb.15338
Girjatowicz, J.P. (2003). Ice conditions in coastal lakes of the southern Baltic Sea. Annales de Limnologie, 39(4), 317‑331. https://doi.org/10.1051/limn/2003026
Girjatowicz, J.P. (2007). Katalog zlodzenia i warunków termicznych polskiego wybrzeża. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.
Gusev, E.M., Nasonova, O.N., Kovalev, E.E., & Ayzel, G.V. (2019). Impact of Possible Climate Change on Extreme Annual Runoff from River Basins Located in Different Regions of the Globe. Water Resources, 46, 126‑136. https://doi.org/10.1134/S0097807819070108
Halbfass, W. (1901). Beiträge zur Kenntnis der pommerschen Seen. Gotha: J. Perthes.
Halbfass, W. (1901). Ergebnisse seiner Seenforschung in Pommern. Verh. der Gesellschaft für Erdkunde, 28.
Halbfass, W. (1904). Weitere Beiträge zur Kenntnis der Pommerschen Seen. Pettermanns Mitteilungen Ergänzungsheft.
Helfer, F., Lemckert, Ch., & Zhang, H. (2012). Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of Hydrology, 475, 365‑378. http://doi.org/10.1016/j.jhydrol.2012.10.008
IRŚ. (1959). Plan batymetryczny jeziora Gardno. Olsztyn: Instytut Rybactwa Śródlądowego.
IRŚ. (1963). Plan batymetryczny jeziora Łebsko. Olsztyn: Instytut Rybactwa Śródlądowego.
Jędrasik, J., & Cyberski, J. (2000). The water exchange in estuarine lakes of the southern Baltic Sea as on the Gardno example. Oceanological Studies, 29(3), 43‑66.
Joehnk, K.D., Huisman, J., Sharples, J., Sommeijer, B., Visser, M.P., & Stroom, M.J. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology, 14(3), 495‑512. https://doi.org/10.1111/j.1365-2486.2007.01510.x
Kaniecki, A. (1997). The influence of anthropopressure on water relations in the Wielkopolska Lowland. Geographia Polonica, 68, 65‑80.
Kerekes, J. (1977). The index of lake basin permanence. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 62(2), 291‑293. https://doi.org/10.1002/iroh.1977.3510620207
Kiage, L., & Walker, N. (2009). Using NDVI from MODIS to monitor duckweed bloom in lake Maracaibo: Venezuela. Water Resources Management, 6, 1125‑1135. https://doi.org/10.1007/s11269-008-9318-9
Kolendowicz, L., & Bednorz, E. (2011). Wybrane elementy klimatu Słowińskiego Parku Narodowego w różnych skalach przestrzennych. Prace i Studia Geograficzne, 47, 205‑213.
Kunisch, E. (1913). Der Gardensee und Gr. Dolgensee. Mit einem Anhang: Ein Beitrag zur Kenntnis des Lebasees. Jahresbericht Geografischer Geselschaft Greiswald, 12, 149‑233.
Lawniczak-Malińska, A., & Achtenberg, K. (2018). Indicator Values of emergent vegetation in overgrowing lakes in relation to water and sediment chemistry. Water, 498(10). https://doi.org/10.3390/w10040498
Liira, J., Feldman, T., Maemets, H., & Peterson, U. (2010). Two decades of macrophyte expansion on the shores of a large shallow northern temperate lake - A retrospective series of satellite images. Aquatic Botany, 93, 207‑215. https://doi.org/10.1016/j.aquabot.2010.08.001
Lin, X., Zhang, Y., Yao, Z., Gong, T., Wang, H., Chu, D., Liu, L., & Zhang, F. (2008). The trend on runoff variations in the Lhasa River Basin. Journal of Geographical Sciences, 18, 95‑106. https://doi.org/10.1007/s11442-008-0095-4
Maberly, S.C., O'Donnell, R.A., Woolway, R.I., Cutler, M.E.J., Gong, M., Jones, I.D., Merchant, C.J., Miller, C.A., Politi, E., Scott, M., Thackeray, S.J., & Tyler, A.N. (2020). Global lake thermal regions shift under climate change. Nature Communications, 11, 1232. https://doi.org/10.1038/s41467-020-15108-z
Marsz, A., & Styszyńska, A. (2021). Inercja rocznego odpływu całkowitego rzek Polski względem międzyrocznej zmienności przebiegu elementów klimatycznych. Badania fizjograficzne. Seria A. Geografia fizyczna, 12; 159‑179. https://doi.org/10.14746/bfg.2021.12.9
Michałowska, K., & Hejmanowska, B. (2008). Możliwości wykorzystania wieloczasowych obrazów znormalizowanego indeksu wegetacji (NDVI) i archiwalnych ortofotomap do badania zmienności wybranych elementów środowiska, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 18, 397‑407.
Miętus, M. (2003). Long-term sea level variability along the Polish coast of the Baltic Sea. W: K. Haman, B. Jakubiak, J. Zabczyk (red.), Probabilistic Problems in Atmospheric and Water Sciences. Seria Fizyka Atmosfery (s. 170‑181). Warszawa: Wydawnictwo ICM.
Mironik, K., Młodzik, A. & Cieśliński, R. (2019). Ocena tempa i kierunków zarastania jezior przy wykorzystaniu znormalizowanego różnicowego wskaźnika wegetacji NDVI na przykładzie jeziora Gardno, Prace i Studia Geograficzne, 64(3), 145‑160.
Miszalski, J. (1973). Współczesne procesy eoliczne na Pobrzeżu Słowińskim. Studium Fotointerpretacyjne. Dokumentacja Geograficzna. Warszawa: Instytut Geografii PAN.
Papastergiadou, E.S., Retalis, A., Apostolakis, A., & Georgiadis, Th. (2008). Environmental monitoring of spatio-temporal changes using remote sensing and GIS in a mediterranean wetland of Northern Greece. Water Resources Management, 22(5), 579‑594. https://doi.org/10.1007/s11269-007-9179-7
Piccolroaz, S., Zhu, S., Ptak, M., Sojka, M., & Du, X. (2021). Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics. Journal of Hydrology: Regional Studies, 34, 1‑18. https://doi.org/10.1016/j.ejrh.2021.100780
Piotrowska, H. (red.). (1997). Przyroda Słowińskiego Parku Narodowego. Poznań-Gdańsk: Bogucki Wydawnictwo Naukowe.
Pociask-Karteczka, J. (2011). River runoff response to climate changes in Poland (East-Central Europe).: Hydro-climatology: variability and change. Proceedings of symposium J-H02, IUGG 2011, Melbourne, Australia. IAHS Publication, 344, 182‑187.
Pruszak, Z., & Zawadzka, E. (2008). Potential implications of sea-level rise for Poland. Journal of Coastal Research, 24(2), 410‑422. https://doi.org/10.2112/07A-0014.1
Ptak, M. (2013). Zmiany powierzchni i batymetrii wybranych jezior pojezierza pomorskiego. Prace Geograficzne, 133, 61‑76.
Ptak, M., Choiński, A. & Kirvel, J. (2016). Long-term water temperature fluctuations in coastal rivers (Southern Baltic) in Poland. Bulletin of Geography. Physical Geography Series, 11, 35‑42. https://doi.org/10.1515/bgeo-2016-0013
Ptak, M., Choiński, A., Sojka, M. & Zhu, S. (2021). Changes in the water resources of selected lakes in Poland in the period 1916‑2020 as information to increase their availability. Sustainability, 13(13), 7298. https://doi.org/10.3390/su13137298
Ptak, M., Olowoyeye, T., & Sojka, M. (2022). Trends of changes in minimum lake water temperature in Poland. Applied Science, 12, 12601. https://doi.org/10.3390/app122412601
Ptak, M., & Sojka, M. (2021). The disappearance of ice cover on temperate lakes (Central Europe) as a result of climate warming. Geographical Journal, 187(3), 200‑213. https://doi.org/10.1111/geoj.12385
Ptak, M., Sojka, M., Choiński, A., & Nowak, B. (2018). Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water, 10(5), 580. https://doi.org/10.3390/w10050580
Ptak, M., Sojka, M., & Kozłowski, M. (2019). The increasing of maximum lake water temperature in lowland lakes of central Europe: case study of the Polish Lakeland. International Journal of Limnology, 55(6). https://doi.org/10.1051/limn/2019005
Ptak, M., Tomczyk, A., & Wrzesiński, D. (2018). Effect of teleconnection patterns on changes in water temperature in Polish lakes. Atmosphere, 66(9), https://doi.org/10.3390/atmos9020066
Ptak, M., Tomczyk, A.M., Wrzesiński, D. & Bednorz, E. (2019). Effect of teleconnection patterns on ice conditions in lakes in lowland Poland. Theoretical and Applied Climatology, 138, 1961‑1969. https://doi.org/10.1007/s00704-019-02929-2
Schechtl, A. (1984). Plan urządzenia gospodarstwa leśnego na okres 1.01.1983 do 31.12.1992, Słowiński Park Narodowy, I: część ogólna planu. Szczecinek: Biuro Urządzania Lasu i Geodezji Leśnej (maszynopis).
Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M., & Schüth, C. (2020). Climate change or irrigated agriculture - what drives the water level decline of Lake Urmia. Scientific Reports, 10, 236. https://doi.org/10.1038/s41598-019-57150-y
Shorthouse, C.A., & Arnell, N.W. (1997). Spatial and temporal variability in European river flows and the North Atlantic oscillation. IAHS Publication, 246, 77‑85.
Szopowski, Z. (1962). Wybrane zagadnienia związane z wymianą wód pomiędzy jeziorem Łebsko a morzem. Materiały do monografii polskiego brzegu morskiego, z. 3. Gdańsk-Poznań: PWN.
Tobolski, K., Mocek, A., & Dzięciołowski, W. (1997). Gleby Słowińskiego Parku Narodowego w świetle historii roślinności i podłoża. Bydgoszcz - Poznań: Homini.
Weber, M. (1973). Próba obliczenia bilansu wodnego jeziora Łebsko. Wiadomości Służby Hydrologiczno-Meteorologicznej, 96(4), 69‑73.
Wojciechowski, A. (1990). Analiza litofacjalna osadów jeziora Gardno. Seria Geografia, 49. Poznań: Wydawnictwo UAM.
Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O'Reilly, C.M., & Sharma, S. (2020). Global lake responses to climate che. Nature Reviews Earth & Environment, 1, 388‑403. https://doi.org/10.1038/s43017-020-0067-5
Woolway, R.I., & Merchant, C.J. (2019). Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12, 271‑276. https://doi.org/10.1038/s41561-019-0322-x
Wrzesiński, D. (2014). Zróżnicowanie reżimu odpływu rzek w północno-zachodniej Polsce. Badania Fizjograficzne. Seria A - Geografia Fizyczna, 65, 261‑274. https://doi.org/10.14746/bfg.2014.5.18
Wrzesiński, D., Choiński, A., Ptak, M., & Skowron, R. (2015). Effect of the North Atlantic Oscillation on the pattern of lake ice phenology in Poland. Acta Geophysica, 63, 1664‑1684. https://doi.org/10.1515/acgeo-2015-0055
Wrzesiński, D., & Ptak, M. (2017). An investigation of water level fluctuations in Polish lakes in various phases of the winter North Atlantic Oscillation. Geology, Geophysics & Environment, 43(2), 151‑163. https://doi.org/10.7494/geol.2017.43.2.151
Xi, Y., Peng, S., Ciais, P., & Chen, Y. (2021). Future impacts of climate change on inland Ramsar wetlands, Nature Climate Change, 11, 45‑51. https://doi.org/10.1038/s41558-020-00942-2
Xia, X.H., Wu, Q., Mou, X.L., & Lai, Y.J. (2014). Potential impacts of climate change on the water quality of different water bodies. Journal of Environmental Informatics, 25(2), 85‑98. https://doi.org/10.3808/jei.201400263
Xia, X., Wu, Q., Zhu, B., Zhao, P., Zhang, S., & Yang, L. (2015). Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes. Science of The Total Environment, 523, 64‑73. https://doi.org/10.1016/j.scitotenv.2015.03.140
Xie, Y., Zhang, Y., Lan, H., Mao, L., Zeng, S., & Chen, Y. (2018). Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining. Journal of Geographical Sciences, 28(6), 802‑818. https://doi.org/10.1007/s11442-018-1506-9
Yang, X., Warren, R., He, Y., Ye, J., Li, Q. & Wang, G. (2018). Impacts of climate change on TN load and its control in a River Basin with complex pollution sources. Science of The Total Environment, 615, 1155‑1163. https://doi.org/10.1016/j.scitotenv.2017.09.288
Zhang, G., Yao, T., Chen, W., Zheng, G., Shumck, C.K., Yang, K., Piao, S., Sheng, Y., Yi, S., Li, J., O'Reilly, C., Qi, S., Shen, S., Zhang, H. & Jia, Y. (2019). Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote Sensing of Environment, 221, 386‑404. https://doi.org/10.1016/j.rse.2018.11.038
Żmudzka, E. (2009). Współczesne zmiany klimatu Polski. Acta Agrophysica, 13(2), 555‑568.
oai:rcin.org.pl:242420 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2024.3.4
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Oct 23, 2024
Oct 23, 2024
104
https://rcin.org.pl./publication/279224
Szafrańska, Ewa
Rosik, Piotr Stępniak, Marcin
Śleszyński, Przemysław
Kawecka-Endrukajtis, Barbara Tuszyńska-Rękawek, Halina Sielużycka, Jadwiga