• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Charakterystyka wybranych cech hydrologicznych jezior przymorskich jako konsekwencja zmiany klimatu = Characteristics of selected hydrological features of coastal lakes as these reflect climate change

Creator:

Cieśliński, Roman : Autor Affiliation ORCID ; Chlost, Izabela : Autor Affiliation ORCID

Date issued/created:

2024

Resource type:

Text

Subtitle:

Przegląd Geograficzny T. 96 z. 3 (2024)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

This paper offers a synthetic account of selected hydrological and physical characteristics of two coastal lakes in Poland, under the apparent influence of changes to be observed in elements of climate. The focus was on those characteristics whose changes can affect lake morphometry and water resources significantly. The two coastal lakes in Poland selected for study were Lakes Gardno and Łebsko, both of which are situated in the area of Słowiński National Park. To achieve the objective, it was necessary to analyse the parameters shaping the lakes’ resources, also as a reflection of their respective positions in the catchment of, and in hydraulic connectivity with, the main drainage base, i.e. that of the Baltic Sea. The parameters characterised were therefore: precipitation, potamic inflow, lake levels and fluctuations in levels, and seaward alimentation. All of these aspects were considered in relation to the 50-year period of 1961‑2010. The study also considered processes occurring in the lake basins themselves (surface changes, shallowing), as well as physical properties of the water (temperature, ice). In the event, it emerged that the work was unable to establish unequivocally the directions in which the two studied lakes could be thought to be evolving. There are nevertheless many indications that the anticipated process of transformation over a geological timescale will be accelerated, resulting in the final (disappearance) stage being reached much faster than would be expected from the natural, harmonic process of ageing of lakes. Leaving aside the fact of human influence in the context, many studied parameters describing the hydrological and physical properties of the two lakes could be regarded as manifesting trends correlated with global warming. On the one hand, the recorded increases in potassium inflows equal to 0.20 m3 ·s-1/10 years (along the River Łupawa) and 0.27 m3 ·s-1/10 years (along the River Łeba), as well as in sea level (equal to 1.6‑1.8 cm/10 years), offer a guarantee of stable water resources forming in the lakes, and should denote increased water levels. In the event, however, the research actually shows the two lakes reacting differently to supply, to the extent that the negative trend for water level in Lake Gardno (of -0.17 cm/10 years) contrasts with the positive one noted for Lake Łebsko (equal to 1.40 cm/10 years). On the other hand, volumes of water retained naturally could be expected to be impaired by observed increases in air temperature – and consequently water temperature, as well as frequently occurring droughts, increased water losses due to evaporation, and unfavourable morphometric features of the lakes. Furthermore, increased supply of sediments by rivers as a consequence of increased flow would be expected to bring about reductions in area, with faster overgrowth taking place. Reed communities at present occupy 4.1% of Lake Gardno and 9.1% of Lake Łebsko. Since 1836, the lakes are estimated to have shrunk by some 237 ha (9.1%) in the case of Lake Gardno, and 546 ha (7.2%) in the case of Lake Łebsko. Meanwhile, positive trends for water temperature in both lakes resulted in a decline in the number of days with ice phenomena over the 50-year study period – from over 100 to just 50‑60.

References:

Balicki, H. (1980). Szkic hydrograficzny zlewni jeziora Gardno. Wiadomości IMiGW, 4, 8‑10.
Baranowski, D. (2008). The climate of Łeba. Baltic Coastal Zone, 12, 75‑84.
Bartosiewicz, M., Ptak, M., Woolway, R., & Sojka, M., (2021). On thinning ice: effects of atmospheric warming, changes in wind speed and rainfall on ice conditions in temperate lakes (Northern Poland). Journal of Hydrology, 597, 125724. https://doi.org/10.1016/j.jhydrol.2020.125724 DOI
Biedka, P. (2013). Wpływ zmian temperatury na przebieg procesów związanych z eutrofizacją jezior. Ekonomia i Środowisko, 45(2), 242‑254.
Burchardt, L. (red.). (2005). Ekosystemy wodne Słowińskiego Parku Narodowego. Poznań: Wydawnictwo Naukowe UAM.
Byun, K., Chiu, C.M. & Hamlet, A.F. (2019). Effects of 21st century climate change on seasonal flow regimes and hydrologic extremes over the Midwest and Great Lakes region of the US. Science of The Total Environment, 650(1), 1261‑1277. https://doi.org/10.1016/j.scitotenv.2018.09.063 DOI
Chlost, I. (2009). Stany wody a bilans wodny jeziora Łebsko. W: R. Bogdanowicz, J. Fac-Beneda (red.), Zasoby i ochrona wód. Obieg wody i materii w zlewniach rzecznych (p. 211-220). Gdańsk: Wydawnictwo FRUG.
Chlost, I. (2019). Water balance of Lake Gardno. Limnological Review, 19(1), 15‑23. https://doi.org/10.2478/limre-2019-0002 DOI
Chlost, I., & Cieśliński, R. (2005). Change of level of waters lake Łebsko. Limnological Review, 5, 17‑26.
Chlost, I., & Sikora, M. (2015). The impact of anthropogenic pressure on the change of water relations in Gardno-Łeba Lowland. Quaestiones Geographicae, 34(3), 17‑31. https://doi.org/10.1515/quageo-2015-0030, ISSN 0137-477X DOI
Choiński, A. (2006). Katalog jezior Polski. Poznań: Wydawnictwo Naukowe UAM.
Choiński, A. (2017). Change of morphometric coastal lakes. W: Obolewski, K. (red.), The ecological status of the southern Baltic coastal lakes (p. 19‑39). Warszawa: PWN.
Choiński, A., & Kaniecki, A. (2004). Plan ochrony Słowińskiego Parku Narodowego. Tom IV: Plan ochrony wód powierzchniowych. Smołdzino (maszynopis).
Choiński, A., & Ptak, M. (2019). Occurrence, genetic types, and evolution of lake basins in Poland. W: E. Korzeniewska, M. Harnisz (red.), Polish river basins and lakes - Part I. The Handbook of Environmental Chemistry (s. 69‑87). Cham: Springer. https://doi.org/10.1007/978-3-030-12123-5_4 DOI
Choiński, A., Ptak, M., & Ławniczak, A.E. (2016). Changes in water resources of Polish lakes as influenced by natural and anthropogenic factors. Polish Journal of Environmental Studies, 25(5), 1883‑1890. https://doi.org/10.15244/pjoes/62906 DOI
Choiński, A., Ptak, M., Skowron, R. & Strzelczak, A. (2015). Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica, 53, 42‑49. https://doi.org/10.1016/j.limno.2015.05.005 DOI
Choiński, A., Ptak, M., & Strzelczak, A. (2012). Examples of lake disappearance as an effect of reclamation. Works in Poland. Limnological Review, 4, 161‑167. https://doi.org/10.2478/v10194-012-0056-2 DOI
Choiński, A., Ptak, M., & Strzelczyk, A. (2014). Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast). Oceanological and Hydrobiological Studies, 43(2), 178‑184. https://doi.org/10.2478/s13545-014-0131-1 DOI
Cieśliński, R. (2013). Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin). Oceanologia, 55(3), 639‑661. https://doi.org/10.5697/oc.55-3.639 DOI
Cieśliński, R. (2018). Changes in hydrological, physical and chemical properties of water in closed/ open coastal lakes due to hydrotechnical structures. Oceanological and Hydrobiological Studies, 47(4); 345 - 358. https://doi.org/10.1515/ohs-2018-0033 DOI
Cieśliński, R., Chlost, I., & Budzisz, M. (2016). Water circulation and recharge pathways of coastal lakes along the southern Baltic Sea in northern Poland. Limnological Review, 16(2); 63‑75. https://doi.org/10.1515/limre-2016-0007 DOI
Ersoy, Z., Scharfenberger, U., Baho, D.L., Bucak, T., Feldmann, T., Hejzlar, J., Levi, E.E., Mahdy, A., Nõges, T., Papastergiadou, E., Stefanidis, K., Šorf, M., Søndergaard, M., Trigal, C., Jeppesen, E., & Beklioğlu, M. (2020). Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A pan-European mesocosm experiment. Global Change Biology, 26, 6831‑6851. https://doi.org/10.1111/gcb.15338 DOI
Girjatowicz, J.P. (2003). Ice conditions in coastal lakes of the southern Baltic Sea. Annales de Limnologie, 39(4), 317‑331. https://doi.org/10.1051/limn/2003026 DOI
Girjatowicz, J.P. (2007). Katalog zlodzenia i warunków termicznych polskiego wybrzeża. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.
Gusev, E.M., Nasonova, O.N., Kovalev, E.E., & Ayzel, G.V. (2019). Impact of Possible Climate Change on Extreme Annual Runoff from River Basins Located in Different Regions of the Globe. Water Resources, 46, 126‑136. https://doi.org/10.1134/S0097807819070108 DOI
Halbfass, W. (1901). Beiträge zur Kenntnis der pommerschen Seen. Gotha: J. Perthes.
Halbfass, W. (1901). Ergebnisse seiner Seenforschung in Pommern. Verh. der Gesellschaft für Erdkunde, 28.
Halbfass, W. (1904). Weitere Beiträge zur Kenntnis der Pommerschen Seen. Pettermanns Mitteilungen Ergänzungsheft.
Helfer, F., Lemckert, Ch., & Zhang, H. (2012). Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of Hydrology, 475, 365‑378. http://doi.org/10.1016/j.jhydrol.2012.10.008 DOI
IRŚ. (1959). Plan batymetryczny jeziora Gardno. Olsztyn: Instytut Rybactwa Śródlądowego.
IRŚ. (1963). Plan batymetryczny jeziora Łebsko. Olsztyn: Instytut Rybactwa Śródlądowego.
Jędrasik, J., & Cyberski, J. (2000). The water exchange in estuarine lakes of the southern Baltic Sea as on the Gardno example. Oceanological Studies, 29(3), 43‑66.
Joehnk, K.D., Huisman, J., Sharples, J., Sommeijer, B., Visser, M.P., & Stroom, M.J. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology, 14(3), 495‑512. https://doi.org/10.1111/j.1365-2486.2007.01510.x DOI
Kaniecki, A. (1997). The influence of anthropopressure on water relations in the Wielkopolska Lowland. Geographia Polonica, 68, 65‑80.
Kerekes, J. (1977). The index of lake basin permanence. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 62(2), 291‑293. https://doi.org/10.1002/iroh.1977.3510620207 DOI
Kiage, L., & Walker, N. (2009). Using NDVI from MODIS to monitor duckweed bloom in lake Maracaibo: Venezuela. Water Resources Management, 6, 1125‑1135. https://doi.org/10.1007/s11269-008-9318-9 DOI
Kolendowicz, L., & Bednorz, E. (2011). Wybrane elementy klimatu Słowińskiego Parku Narodowego w różnych skalach przestrzennych. Prace i Studia Geograficzne, 47, 205‑213.
Kunisch, E. (1913). Der Gardensee und Gr. Dolgensee. Mit einem Anhang: Ein Beitrag zur Kenntnis des Lebasees. Jahresbericht Geografischer Geselschaft Greiswald, 12, 149‑233.
Lawniczak-Malińska, A., & Achtenberg, K. (2018). Indicator Values of emergent vegetation in overgrowing lakes in relation to water and sediment chemistry. Water, 498(10). https://doi.org/10.3390/w10040498 DOI
Liira, J., Feldman, T., Maemets, H., & Peterson, U. (2010). Two decades of macrophyte expansion on the shores of a large shallow northern temperate lake - A retrospective series of satellite images. Aquatic Botany, 93, 207‑215. https://doi.org/10.1016/j.aquabot.2010.08.001 DOI
Lin, X., Zhang, Y., Yao, Z., Gong, T., Wang, H., Chu, D., Liu, L., & Zhang, F. (2008). The trend on runoff variations in the Lhasa River Basin. Journal of Geographical Sciences, 18, 95‑106. https://doi.org/10.1007/s11442-008-0095-4 DOI
Maberly, S.C., O'Donnell, R.A., Woolway, R.I., Cutler, M.E.J., Gong, M., Jones, I.D., Merchant, C.J., Miller, C.A., Politi, E., Scott, M., Thackeray, S.J., & Tyler, A.N. (2020). Global lake thermal regions shift under climate change. Nature Communications, 11, 1232. https://doi.org/10.1038/s41467-020-15108-z DOI
Marsz, A., & Styszyńska, A. (2021). Inercja rocznego odpływu całkowitego rzek Polski względem międzyrocznej zmienności przebiegu elementów klimatycznych. Badania fizjograficzne. Seria A. Geografia fizyczna, 12; 159‑179. https://doi.org/10.14746/bfg.2021.12.9 DOI
Michałowska, K., & Hejmanowska, B. (2008). Możliwości wykorzystania wieloczasowych obrazów znormalizowanego indeksu wegetacji (NDVI) i archiwalnych ortofotomap do badania zmienności wybranych elementów środowiska, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 18, 397‑407.
Miętus, M. (2003). Long-term sea level variability along the Polish coast of the Baltic Sea. W: K. Haman, B. Jakubiak, J. Zabczyk (red.), Probabilistic Problems in Atmospheric and Water Sciences. Seria Fizyka Atmosfery (s. 170‑181). Warszawa: Wydawnictwo ICM.
Mironik, K., Młodzik, A. & Cieśliński, R. (2019). Ocena tempa i kierunków zarastania jezior przy wykorzystaniu znormalizowanego różnicowego wskaźnika wegetacji NDVI na przykładzie jeziora Gardno, Prace i Studia Geograficzne, 64(3), 145‑160.
Miszalski, J. (1973). Współczesne procesy eoliczne na Pobrzeżu Słowińskim. Studium Fotointerpretacyjne. Dokumentacja Geograficzna. Warszawa: Instytut Geografii PAN.
Papastergiadou, E.S., Retalis, A., Apostolakis, A., & Georgiadis, Th. (2008). Environmental monitoring of spatio-temporal changes using remote sensing and GIS in a mediterranean wetland of Northern Greece. Water Resources Management, 22(5), 579‑594. https://doi.org/10.1007/s11269-007-9179-7 DOI
Piccolroaz, S., Zhu, S., Ptak, M., Sojka, M., & Du, X. (2021). Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics. Journal of Hydrology: Regional Studies, 34, 1‑18. https://doi.org/10.1016/j.ejrh.2021.100780 DOI
Piotrowska, H. (red.). (1997). Przyroda Słowińskiego Parku Narodowego. Poznań-Gdańsk: Bogucki Wydawnictwo Naukowe.
Pociask-Karteczka, J. (2011). River runoff response to climate changes in Poland (East-Central Europe).: Hydro-climatology: variability and change. Proceedings of symposium J-H02, IUGG 2011, Melbourne, Australia. IAHS Publication, 344, 182‑187.
Pruszak, Z., & Zawadzka, E. (2008). Potential implications of sea-level rise for Poland. Journal of Coastal Research, 24(2), 410‑422. https://doi.org/10.2112/07A-0014.1 DOI
Ptak, M. (2013). Zmiany powierzchni i batymetrii wybranych jezior pojezierza pomorskiego. Prace Geograficzne, 133, 61‑76.
Ptak, M., Choiński, A. & Kirvel, J. (2016). Long-term water temperature fluctuations in coastal rivers (Southern Baltic) in Poland. Bulletin of Geography. Physical Geography Series, 11, 35‑42. https://doi.org/10.1515/bgeo-2016-0013 DOI
Ptak, M., Choiński, A., Sojka, M. & Zhu, S. (2021). Changes in the water resources of selected lakes in Poland in the period 1916‑2020 as information to increase their availability. Sustainability, 13(13), 7298. https://doi.org/10.3390/su13137298 DOI
Ptak, M., Olowoyeye, T., & Sojka, M. (2022). Trends of changes in minimum lake water temperature in Poland. Applied Science, 12, 12601. https://doi.org/10.3390/app122412601 DOI
Ptak, M., & Sojka, M. (2021). The disappearance of ice cover on temperate lakes (Central Europe) as a result of climate warming. Geographical Journal, 187(3), 200‑213. https://doi.org/10.1111/geoj.12385 DOI
Ptak, M., Sojka, M., Choiński, A., & Nowak, B. (2018). Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water, 10(5), 580. https://doi.org/10.3390/w10050580 DOI
Ptak, M., Sojka, M., & Kozłowski, M. (2019). The increasing of maximum lake water temperature in lowland lakes of central Europe: case study of the Polish Lakeland. International Journal of Limnology, 55(6). https://doi.org/10.1051/limn/2019005 DOI
Ptak, M., Tomczyk, A., & Wrzesiński, D. (2018). Effect of teleconnection patterns on changes in water temperature in Polish lakes. Atmosphere, 66(9), https://doi.org/10.3390/atmos9020066 DOI
Ptak, M., Tomczyk, A.M., Wrzesiński, D. & Bednorz, E. (2019). Effect of teleconnection patterns on ice conditions in lakes in lowland Poland. Theoretical and Applied Climatology, 138, 1961‑1969. https://doi.org/10.1007/s00704-019-02929-2 DOI
Schechtl, A. (1984). Plan urządzenia gospodarstwa leśnego na okres 1.01.1983 do 31.12.1992, Słowiński Park Narodowy, I: część ogólna planu. Szczecinek: Biuro Urządzania Lasu i Geodezji Leśnej (maszynopis).
Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M., & Schüth, C. (2020). Climate change or irrigated agriculture - what drives the water level decline of Lake Urmia. Scientific Reports, 10, 236. https://doi.org/10.1038/s41598-019-57150-y DOI
Shorthouse, C.A., & Arnell, N.W. (1997). Spatial and temporal variability in European river flows and the North Atlantic oscillation. IAHS Publication, 246, 77‑85.
Szopowski, Z. (1962). Wybrane zagadnienia związane z wymianą wód pomiędzy jeziorem Łebsko a morzem. Materiały do monografii polskiego brzegu morskiego, z. 3. Gdańsk-Poznań: PWN.
Tobolski, K., Mocek, A., & Dzięciołowski, W. (1997). Gleby Słowińskiego Parku Narodowego w świetle historii roślinności i podłoża. Bydgoszcz - Poznań: Homini.
Weber, M. (1973). Próba obliczenia bilansu wodnego jeziora Łebsko. Wiadomości Służby Hydrologiczno-Meteorologicznej, 96(4), 69‑73.
Wojciechowski, A. (1990). Analiza litofacjalna osadów jeziora Gardno. Seria Geografia, 49. Poznań: Wydawnictwo UAM.
Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O'Reilly, C.M., & Sharma, S. (2020). Global lake responses to climate che. Nature Reviews Earth & Environment, 1, 388‑403. https://doi.org/10.1038/s43017-020-0067-5 DOI
Woolway, R.I., & Merchant, C.J. (2019). Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12, 271‑276. https://doi.org/10.1038/s41561-019-0322-x DOI
Wrzesiński, D. (2014). Zróżnicowanie reżimu odpływu rzek w północno-zachodniej Polsce. Badania Fizjograficzne. Seria A - Geografia Fizyczna, 65, 261‑274. https://doi.org/10.14746/bfg.2014.5.18 DOI
Wrzesiński, D., Choiński, A., Ptak, M., & Skowron, R. (2015). Effect of the North Atlantic Oscillation on the pattern of lake ice phenology in Poland. Acta Geophysica, 63, 1664‑1684. https://doi.org/10.1515/acgeo-2015-0055 DOI
Wrzesiński, D., & Ptak, M. (2017). An investigation of water level fluctuations in Polish lakes in various phases of the winter North Atlantic Oscillation. Geology, Geophysics & Environment, 43(2), 151‑163. https://doi.org/10.7494/geol.2017.43.2.151 DOI
Xi, Y., Peng, S., Ciais, P., & Chen, Y. (2021). Future impacts of climate change on inland Ramsar wetlands, Nature Climate Change, 11, 45‑51. https://doi.org/10.1038/s41558-020-00942-2 DOI
Xia, X.H., Wu, Q., Mou, X.L., & Lai, Y.J. (2014). Potential impacts of climate change on the water quality of different water bodies. Journal of Environmental Informatics, 25(2), 85‑98. https://doi.org/10.3808/jei.201400263 DOI
Xia, X., Wu, Q., Zhu, B., Zhao, P., Zhang, S., & Yang, L. (2015). Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes. Science of The Total Environment, 523, 64‑73. https://doi.org/10.1016/j.scitotenv.2015.03.140 DOI
Xie, Y., Zhang, Y., Lan, H., Mao, L., Zeng, S., & Chen, Y. (2018). Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining. Journal of Geographical Sciences, 28(6), 802‑818. https://doi.org/10.1007/s11442-018-1506-9 DOI
Yang, X., Warren, R., He, Y., Ye, J., Li, Q. & Wang, G. (2018). Impacts of climate change on TN load and its control in a River Basin with complex pollution sources. Science of The Total Environment, 615, 1155‑1163. https://doi.org/10.1016/j.scitotenv.2017.09.288 DOI
Zhang, G., Yao, T., Chen, W., Zheng, G., Shumck, C.K., Yang, K., Piao, S., Sheng, Y., Yi, S., Li, J., O'Reilly, C., Qi, S., Shen, S., Zhang, H. & Jia, Y. (2019). Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote Sensing of Environment, 221, 386‑404. https://doi.org/10.1016/j.rse.2018.11.038 DOI
Żmudzka, E. (2009). Współczesne zmiany klimatu Polski. Acta Agrophysica, 13(2), 555‑568.

Relation:

Przegląd Geograficzny

Volume:

96

Issue:

3

Start page:

367

End page:

394

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

oai:rcin.org.pl:242420 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2024.3.4

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style:

This page uses 'cookies'. More information