RCIN and OZwRCIN projects

Object

Title: Bandgap tunability and properties of (Cd, Mg)O random alloys and quasi-ternary alloys - {CdO/MgO} superlattices – obtained by MBE

Creator:

Adhikari, Abinash

Date issued/created:

2024

Resource type:

książka

Institutional creator:

Instytut Fizyki PAN

Place of publishing:

Warszawa

Description:

Rozprawy doktorskie

Level of degree:

2

Degree discipline :

nauki fizyczne

Degree grantor:

Instytut Fizyki PAN

Abstract:

Oxide semiconductors are promising candidates in the semiconductor industry due to their widespread applications, including lasers, light-emitting devices (LEDs), detectors, etc. In recent decades, extensive research has been conducted on ZnO and related alloys (such as ZnO-MgO and ZnO-CdO systems) as potential alternatives to the GaN system (including AlGaN and InGaN). However, despite sharing the same crystal structure as both CdO and MgO (cubic rocksalt structure; Fm̅3m), the exploration of CdO-MgO-based alloys remains one of the least studied aspects in the group II-IV oxides system. Notably, the bandgap tunability of CdO, ranging from 2.3 to 7.5 eV through alloying with MgO, enhances the prospective applications of CdO-MgO-based ternary alloys across the visible to deep ultraviolet (UVC) wavelength region. There are two possible approaches to obtaining ternary alloys: random layers and quasi-ternary alloys short period superlattices. Random ternary alloys offer isotropic structural, optical, and electronic properties, whereas quasi-ternary alloys provide tailored physical properties through precise control of the thickness and composition of each sublayer. Furthermore, the growth of alloys on different substrates provides an additional degree of freedom that influences ternary alloys' structural and morphological properties. This PhD dissertation aims to explore the properties of CdO-MgO-based, both random and quasi-ternary alloys grown using plasma-assisted molecular beam epitaxy (PAMBE) growth technique. MBE is an advanced epitaxial growth technique that offers sharp interfaces, low levels of impurities, low defect concentration, and precise control of the grown layers. The main key goal is to focus on bandgap tunability in CdO-MgO-based ternary alloys grown on different substrates (including various planes of sapphire, quartz, MgO, and Si). To achieve this objective, a range of characterization techniques are employed in ternary alloys, including XRD, SEM, EDX, AFM, SIMS, TEM, UV-visible spectroscopy, and electrical measurements. The work of the PhD dissertation is divided into three main parts. In the beginning, I discuss the various physical properties of CdO binary oxide on m-plane sapphire, quartz, and Si substrates. The influence of stoichiometry on the structural, morphological, and electrical properties of CdO layers is analyzed. The shifting of bandgap with change in growth conditions is further interpreted using the combining Burstein-Moss, electronelectron and electron-ion effects. The temperature-dependent bandgap study of CdO/quartz is performed, and the bandgap temperature coefficient is determined. Furthermore, the optical investigations are carried out using reflectance spectra to determine the optical parameters of CdO/Si. In the second section of my doctoral dissertation, CdMgO random ternary alloys grown on various planes of sapphire, quartz, and Si substrates are studied. The Cd and Mg ii content in the CdMgO alloys is controlled by varying the growth conditions. The optical bandgap can be tuned with an increase in Mg content in the alloys from yellow to UVC region. The structural investigations using XRD reveal that different substrates, as well as the growth conditions, influence the orientations of the CdMgO random alloys. However, for higher Mg content, evidence of mixed non-homogeneous crystal starts to appear. In the last section, I discuss heteroepitaxial and homoepitaxial {CdO/MgO} quasiternary alloys short-period superlattice (SL) structures grown on sapphire and MgO substrates, respectively.

References:

[1] A. Adhikari, A. Wierzbicka, Z. Adamus, A. Lysak, P. Sybilski, D. Jarosz, and E. Przezdziecka, Correlated Carrier Transport and Optical Phenomena in CdO Layers Grown by Plasma-Assisted Molecular Beam Epitaxy Technique, Thin Solid Films 780, 139963 (2023).
[2] A. Adhikari, A. Lysak, A. Wierzbicka, P. Sybilski, A. Reszka, B. S. Witkowski, and E. Przezdziecka, MBE Grown Preferentially Oriented CdMgO Alloy on M-and c-Plane Sapphire Substrates, Mater Sci Semicond Process 144, 106608 (2022).
[3] A. Adhikari, A. Wierzbicka, A. Lysak, P. Sybilski, B. S. Witkowski, and E. Przeździecka, Effective Mg Incorporation in CdMgO Alloy on Quartz Substrate Grown by Plasma-Assisted MBE, Acta Phys Pol A 143, 228 (2023).
[4] A. Adhikari, P. Strak, P. Dluzewski, A. Kaminska, and E. Przezdziecka, Pressure-Dependent Bandgap Study of MBE Grown {CdO/MgO} Short Period SLs Using Diamond Anvil Cell, Appl Phys Lett 121, 242103 (2022).
[5] E. Przeździecka, P. Strąk, A. Wierzbicka, A. Adhikari, A. Lysak, P. Sybilski, J. M. Sajkowski, A. Seweryn, and A. Kozanecki, The Band-Gap Studies of Short-Period CdO/MgO Superlattices, Nanoscale Res Lett 16, 59 (2021).
[6] Sir Ambrose Fleming (Jubilee of the Valve), Notes Rec R Soc Lond 11, 134 (1955).
[7] J. Bordeen, W. H. Bratrain, and W. Shockley, 1956 Nobel Prize in Physics, Phys Today 10, 16 (1957).
[8] J. Moll, M. Tanenbaum, J. Goldey, and N. Holonyak, P-N-P-N Transistor Switches, Proceedings of the IRE 44, 1174 (1956).
[9] G. K. Teal, Single Crystals of Germanium and Silicon—Basic to the Transistor and Integrated Circuit, IEEE Trans Electron Devices 23, 621 (1976).
[10] J. Magazine, In Memoriam - Jack Kilby (1923-2005) Inventor of the Integrated Circuit, IEEE Signal Process Mag 22, 6 (2005).
[11] L. R. Berlin, Robert Noyce and Fairchild Semiconductor, 1957–1968, Bus Hist Rev 75, 63 (2001).
[12] J. D. Meindl, A History of Low Power Electronics, in Proceedings of the 1997 International Symposium on Low Power Electronics and Design-ISLPED ’97(ACM Press, New York, New York, USA, 1997), pp. 149–151.
[13] R. R. Schaller, Moore’s Law: Past, Present and Future, IEEE Spectr 34, 52 (1997).
[14] C. E. Chang and W. R. Wilcox, Control of Interface Shape in the Vertical Bridgman-Stockbarger Technique, J Cryst Growth 21, 135 (1974).
[15] P. E. Tomaszewski, Jan Czochralski—Father of the Czochralski Method, J Cryst Growth 236, 1 (2002).
[16] W. Dietzel, W. Keller, and A. Mfihlbauer, Float-Zone Grown Silicon, Crystals, Growth, Properties and Applications 5, 1 (1981).
[18] J.-O. Carlsson and P. M. Martin, Chemical Vapor Deposition, in Handbook of Deposition Technologies for Films and Coatings(Elsevier, 2010), pp. 314–363.
[19] T. Foxon, History of MBE: Materials and Applications for Electronics and Optoelectronics, 1 (2019).
[20] C. A. Wang, Early History of MOVPE Reactor Development, J Cryst Growth 506, 190 (2019).
[21] Z. Yin and X. Tang, A Review of Energy Bandgap Engineering in III–V Semiconductor Alloys for Mid-Infrared Laser Applications, Solid State Electron 51, 6 (2007).
[22] A. L. Greenaway, J. W. Boucher, S. Z. Oener, C. J. Funch, and S. W. Boettcher, Low-Cost Approaches to III-V Semiconductor Growth for Photovoltaic Applications, ACS Energy Lett 2, 2270 (2017).
[23] M. P. Mikhailova, K. D. Moiseev, and Y. P. Yakovlev, Discovery of III–V Semiconductors: Physical Properties and Application, Semiconductors 53, 273 (2019).
[24] F. E. Rosztoczy, S. I. Long, and J. Kinoshita, LPE GaAs for Microwave Applications, J Cryst Growth 27, 205 (1974).
[25] A. G. Foyt, The Electro-Optic Applications of InP, J Cryst Growth 54, 1 (1981).
[26] S. Strite and H. Morkoç, GaN, AlN, and InN: A Review, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 10, 1237 (1992).
[27] J. I. Pankove, GaN: From Fundamentals to Applications, Materials Science and Engineering: B 61–62, 305 (1999).
[28] F. A. Ponce, D. P. Bour, M. C. Y. Huang, Y. Zhou, C. J. Chang--Hasnain, L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, Nobel Prize 2014: Akasaki, Amano & Nakamura, Nature Physics 2014 10:11 10, 791 (2014).
[29] M. Siekacz et al., Impact of the Substrate Lattice Constant on the Emission Properties of InGaN/GaN Short-Period Superlattices Grown by Plasma Assisted MBE, Superlattices Microstruct 133, 106209 (2019).
[30] K. Pantzas et al., Semibulk InGaN: A Novel Approach for Thick, Single Phase, Epitaxial InGaN Layers Grown by MOVPE, J Cryst Growth 370, 57 (2013).
[31] I. Gorczyca, T. Suski, N. E. Christensen, and A. Svane, Hydrostatic Pressure and Strain Effects in Short Period InN/GaN Superlattices, Appl Phys Lett 101, 1 (2012).
[32] I. Gorczyca, K. Skrobas, T. Suski, N. E. Christensen, and A. Svane, Band Gaps in InN/GaN Superlattices: Nonpolar and Polar Growth Directions, J Appl Phys 114, 223102 (2013).
[33] I. Gorczyca, T. Suski, P. Strak, G. Staszczak, and N. E. Christensen, Band Gap Engineering of In(Ga)N/GaN Short Period Superlattices, Sci Rep 7, 1 (2017).
[34] T. Kawamura, Y. Fujita, Y. Hamaji, T. Akiyama, Y. Kangawa, I. Gorczyca, T. Suski, M. Wierzbowska, and S. Krukowski, First-Principles Calculation of Bandgaps of Al1−xInxN Alloys and Short-Period Al1−xInxN/Al1−yInyN Superlattices, Physica Status Solidi (b) 257, 1900530 (2020).
[35] G. Staszczak, I. Gorczyca, T. Suski, X. Q. Wang, N. E. Christensen, A. Svane, E. Dimakis, and T. D. Moustakas, Photoluminescence and Pressure Effects in Short Period InN/NGaN Superlattices, J Appl Phys 113, 123101 (2013).
[37] P. D. C. King and T. D. Veal, Conductivity in Transparent Oxide Semiconductors, Journal of Physics: Condensed Matter 23, 334214 (2011).
[38] M. A. Mayer, K. M. Yu, D. T. Speaks, J. D. Denlinger, L. A. Reichertz, J. W. Beeman, E. E. Haller, and W. Walukiewicz, Band Gap Engineering of Oxide Photoelectrodes: Characterization of ZnO 1-XSe x, Journal of Physical Chemistry C 116, 15281 (2012).
[39] Y. Z. Zhu, G. D. Chen, H. Ye, A. Walsh, C. Y. Moon, and S. H. Wei, Electronic Structure and Phase Stability of MgO, ZnO, CdO, and Related Ternary Alloys, Phys Rev B Condens Matter Mater Phys 77, 245209 (2008).
[40] Z. Zhang, Y. Guo, and J. Robertson, Atomic Structure and Band Alignment at Al2O3/GaN, Sc2O3/GaN and La2O3/GaN Interfaces: A First-Principles Study, Microelectron Eng 216, 111039 (2019).
[41] A. Walsh, J. L. F. Da Silva, and S. H. Wei, Multi-Component Transparent Conducting Oxides: Progress in Materials Modelling, Journal of Physics: Condensed Matter 23, 334210 (2011).
[42] S. Li et al., Intrinsic Energy Band Alignment of Functional Oxides, Physica Status Solidi - Rapid Research Letters 8, 571 (2014).
[43] C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, 65 Years of ZnO Research – Old and Very Recent Results, Physica Status Solidi (b) 247, 1424 (2010).
[44] O. Oprea, E. Andronescu, D. Ficai, A. Ficai, F. N. Oktar, and M. Yetmez, ZnO Applications and Challenges, (n.d.).
[45] C. F. Klingshirn, ZnO: Material, Physics and Applications, ChemPhysChem 8, 782 (2007).
[46] S. Das and V. Jayaraman, SnO2: A Comprehensive Review on Structures and Gas Sensors, Prog Mater Sci 66, 112 (2014).
[47] K. Hashimoto, H. Irie, and A. Fujishima, TiO 2Photocatalysis: A Historical Overview and Future Prospects, Jpn J Appl Phys 44, 8269 (2005).
[48] K. Bädeker, Über Die Elektrische Leitfähigkeit Und Die Thermoelektrische Kraft Einiger Schwermetallverbindungen, Ann Phys 327, 749 (1907).
[49] F. Yakuphanoglu, Nanocluster N-CdO Thin Film by Sol–Gel for Solar Cell Applications, Appl Surf Sci 257, 1413 (2010).
[50] G. K. Upadhyay, V. Kumar, and L. P. Purohit, Optimized CdO:TiO2 Nanocomposites for Heterojunction Solar Cell Applications, J Alloys Compd 856, 157453 (2021).
[51] J. W. Fergus, Perovskite Oxides for Semiconductor-Based Gas Sensors, Sens Actuators B Chem 123, 1169 (2007).
[52] M. Kimura, Emerging Applications Using Metal-Oxide Semiconductor Thin-Film Devices, Jpn J Appl Phys 58, 090503 (2019).
[53] R. J. Guerrero-Moreno and N. Takeuchi, First Principles Calculations of the Ground-State Properties and Structural Phase Transformation in CdO, Phys Rev B 66, 205205 (2002).
[54] B. D. Sahoo, K. D. Joshi, and S. C. Gupta, Ab Initio Calculations on Structural, Elastic and Dynamic Stability of CdO at High Pressures, J Appl Phys 112, (2012).
[55] A. R. Oganov and P. I. Dorogokupets, All-Electron and Pseudopotential Study of MgO: Equation of State, Anharmonicity, and Stability, Phys Rev B 67, 224110 (2003).
[57] M. E. Straumanis, P. M. Vora, and A. A. Khan, Gitterparameter Und Thermische Ausdehnungskoeffizienten Des CdO Zwischen 40 Und 1300°K. Fehlbau Des Oxids, Z Anorg Allg Chem 383, 211 (1971).
[58] Y. Z. Zhu, G. D. Chen, H. Ye, A. Walsh, C. Y. Moon, and S. H. Wei, Electronic Structure and Phase Stability of MgO, ZnO, CdO, and Related Ternary Alloys, Phys Rev B Condens Matter Mater Phys 77, 1 (2008).
[59] P. Kaur, A. Kaur, S. Singh, S. Thakur, and L. Singh, Comprehensive Analysis of Crystal Structure, Optical and Luminescent Behavior of Fe Doped MgO Nanophosphors, Optik (Stuttg) 219, 164742 (2020).
[60] K. Maschke and U. Rössler, The Electronic Structure of CdO I. The Energy-Band Structure (APW Method), Physica Status Solidi (B) 28, 577 (1968).
[61] L. F. J. Piper, A. DeMasi, K. E. Smith, A. Schleife, F. Fuchs, F. Bechstedt, J. Zuniga-Pérez, and V. Munoz-Sanjosé, Electronic Structure of Single-Crystal Rocksalt CdO Studied by Soft x-Ray Spectroscopies and Ab Initio Calculations, Phys Rev B Condens Matter Mater Phys 77, 125204 (2008).
[62] J. E. Jaffe, R. Pandey, and A. B. Kunz, Electronic Structure of the Rocksalt-Structure Semiconductors ZnO and CdO, Phys Rev B 43, 14030 (1991).
[63] Y. Dou, R. G. Egdell, D. S. L. Law, N. M. Harrison, and B. G. Searle, An Experimental and Theoretical Investigation of the Electronic Structure of CdO, Journal of Physics: Condensed Matter 10, 8447 (1998).
[64] I. N. Demchenko, M. Chernyshova, T. Tyliszczak, J. D. Denlinger, K. M. Yu, D. T. Speaks, O. Hemmers, W. Walukiewicz, G. Derkachov, and K. Lawniczak-Jablonska, Electronic Structure of CdO Studied by Soft X-Ray Spectroscopy, J Electron Spectros Relat Phenomena 184, 249 (2011).
[65] A. Breeze and P. G. Perkins, An LCAO Calculation of the Band Structure of Cadmium Oxide, Solid State Commun 13, 1031 (1973).
[66] S. Tewari, The Electronic Bandstructure of CdO by the Augmented Plane Wave Method, Solid State Commun 12, 437 (1973).
[67] U. Schönberger and F. Aryasetiawan, Bulk and Surface Electronic Structures of MgO, Phys Rev B 52, 8788 (1995).
[68] S. T. Pantelides, D. J. Mickish, and A. B. Kunz, Electronic Structure and Properties of Magnesium Oxide, Phys Rev B 10, 5203 (1974).
[69] N. Kamarulzaman, D. T. Mustaffa, N. F. Chayed, N. Badar, M. F. M. Taib, and A. B. M. A. Ibrahim, Comparison of Experimental and First-Principle Results of Band-Gap Narrowing of MgO Nanostructures and Their Dependence on Crystal Structural Parameters, Appl Nanosci 8, 1621 (2018).
[70] N. Kamarulzaman, N. F. Chayed, N. Badar, M. F. Kasim, D. T. Mustaffa, K. Elong, R. Rusdi, T. Oikawa, and H. Furukawa, Band Gap Narrowing of 2-D Ultra-Thin MgO Graphene-Like Sheets, ECS Journal of Solid State Science and Technology 5, Q3038 (2016).
[71] C. Martinez-Boubeta et al., Self-Assembled Multifunctional Fe/MgO Nanospheres for Magnetic Resonance Imaging and Hyperthermia, Nanomedicine 6, 362 (2010).
[73] D. R. Di, Z. Z. He, Z. Q. Sun, and J. Liu, A New Nano-Cryosurgical Modality for Tumor Treatment Using Biodegradable MgO Nanoparticles, Nanomedicine 8, 1233 (2012).
[74] I. Apostolova, A. Apostolov, and J. Wesselinowa, Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia, Materials 2023, Vol. 16, Page 2353 16, 2353 (2023).
[75] K. Krishnamoorthy, J. Y. Moon, H. B. Hyun, S. K. Cho, and S. J. Kim, Mechanistic Investigation on the Toxicity of MgO Nanoparticles toward Cancer Cells, J Mater Chem 22, 24610 (2012).
[76] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, Fabrication of MgO Nanostructures and Its Efficient Photocatalytic, Antibacterial and Anticancer Performance, J Photochem Photobiol B 190, 8 (2019).
[77] P. H. Jefferson, S. A. Hatfield, T. D. Veal, P. D. C. King, C. F. McConville, J. Zúñiga–Pérez, and V. Muñoz–Sanjosé, Bandgap and Effective Mass of Epitaxial Cadmium Oxide, Appl Phys Lett 92, 022101 (2008).
[78] D. T. Speaks, M. A. Mayer, K. M. Yu, S. S. Mao, E. E. Haller, and W. Walukiewicz, Fermi Level Stabilization Energy in Cadmium Oxide, J Appl Phys 107, 113706 (2010).
[79] A. JemmyCinthia, G. Sudhapriyang, R. Rajeswarapalanichamy, and M. Santhosh, Structural, Electronic and Elastic Properties of ZnO and CdO: A First-Principles Study, Procedia Materials Science 5, 1034 (2014).
[80] F. Peng, Q. Liu, H. Fu, and X. Yang, First-Principles Calculations on Phase Transition and Elasticity of CdO under Pressure, Solid State Commun 148, 6 (2008).
[81] A. Gueddim, N. Bouarissa, and A. Villesuzanne, Pressure Dependence of Elastic Constants and Related Parameters for Rocksalt MgO, Comput Mater Sci 48, 490 (2010).
[82] D. G. Isaak, O. L. Anderson, and T. Goto, Measured Elastic Moduli of Single-Crystal MgO up to 1800 K, Phys Chem Miner 16, 704 (1989).
[83] J. Zúñiga-Pérez, ZnCdO: Status after 20 Years of Research, Mater Sci Semicond Process 69, 36 (2017).
[84] J. He, Comparison between The Ultra-Wide Band Gap Semiconductor AlGaN and GaN, IOP Conf Ser Mater Sci Eng 738, 012009 (2020).
[85] K. Ploog and G. H. Döhler, Compositional and Doping Superlattices in III-V Semiconductors, Adv Phys 32, 285 (1983).
[86] K. Ploog, Doping Superlattices, in Molecular Beam Epitaxy and Heterostructures(Springer Netherlands, Dordrecht, 1985), pp. 533–574.
[87] H. Zhu, T. Cai, M. Que, J. P. Song, B. M. Rubenstein, Z. Wang, and O. Chen, Pressure-Induced Phase Transformation and Band-Gap Engineering of Formamidinium Lead Iodide Perovskite Nanocrystals, Journal of Physical Chemistry Letters 9, 4199 (2018).
[88] R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, Strain Engineering in Semiconducting Two-Dimensional Crystals, Journal of Physics: Condensed Matter 27, 313201 (2015).
[89] M. R. Molas, K. Nogajewski, A. O. Slobodeniuk, J. Binder, M. Bartos, and M. Potemski, The Optical Response of Monolayer, Few-Layer and Bulk Tungsten Disulfide, Nanoscale 9, 13128 (2017).
[91] Q. Li, J. Zhang, Z. Zhang, J.-L. Yang, K.-W. Liu, and D.-Z. Shen, Recent Progress of ZnMgO Ultraviolet Photodetector*, Chinese Physics B 26, 047308 (2017).
[92] A. Y. Cho, Film Deposition by Molecular-Beam Techniques, Journal of Vacuum Science and Technology 8, S31 (1971).
[93] A. Y. Cho and J. R. Arthur, Molecular Beam Epitaxy, Progress in Solid State Chemistry 10, 157 (1975).
[94] E. Kasper, Growth Kinetics of Si-Molecular Beam Epitaxy, Applied Physics A Solids and Surfaces 28, 129 (1982).
[95] M. A. Herman and H. Sitter, Molecular Beam Epitaxy, 7, (1996).
[96] One-Dimensional Dislocations. I. Static Theory, Proc R Soc Lond A Math Phys Sci 198, 205 (1949).
[97] M. Volmer and Α. Weber, Keimbildung in Übersättigten Gebilden, Zeitschrift Für Physikalische Chemie 119U, 277 (1926).
[98] I. N. Stranski and L. Krastanow, Zur Theorie Der Orientierten Ausscheidung von Ionenkristallen Aufeinander, Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften 1971 71:1 71, 351 (1937).
[99] C. P. Poole and F. J. Owens, Introduction to Nanotechnology, 388 (2003).
[100] L. Morresi, editor , Molecular Beam Epitaxy (MBE), in Silicon Based Thin Film Solar Cells (BENTHAM SCIENCE PUBLISHERS, 2013), pp. 81–107.
[101] K. Klosek, M. Sobanska, G. Tchutchulashvili, Z. R. Zytkiewicz, H. Teisseyre, and L. Klopotowski, Optimization of Nitrogen Plasma Source Parameters by Measurements of Emitted Light Intensity for Growth of GaN by Molecular Beam Epitaxy, Thin Solid Films 534, 107 (2013).
[102] D. Alpert, New Developments in the Production and Measurement of Ultra High Vacuum, J Appl Phys 24, 860 (1953).
[103] A. W. Jackson, P. R. Pinsukanjana, A. C. Gossard, and L. A. Coldren, In Situ Monitoring and Control for MBE Growth of Optoelectronic Devices, IEEE Journal on Selected Topics in Quantum Electronics 3, 836 (1997).
[104] W. S. Lee, G. W. Yoffe, D. G. Schlom, and J. S. Harris, Accurate Measurement of MBE Substrate Temperature, J Cryst Growth 111, 131 (1991).
[105] Quadrupole Mass Spectrometry and Its Applications, Quadrupole Mass Spectrometry and Its Applications (1976).
[106] S. A. Chambers, Epitaxial Growth and Properties of Thin Film Oxides, Surf Sci Rep 39, 105 (2000).
[107] S. C. Palmateer, L. F. Eastman, and A. R. Calawa, The Use of Substrate Annealing as a Gettering Technique Prior to Molecular Beam Epitaxial Growth, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena 2, 188 (1984).
[108] D. Diaz-Fernandez, M. Spreitzer, T. Parkelj, J. Kovač, and D. Suvorov, The Importance of Annealing and Stages Coverage on the Epitaxial Growth of Complex Oxides on Silicon by Pulsed Laser Deposition, RSC Adv 7, 24709 (2017).
[109] B. Warren, X-Ray Diffraction(1990).
[110] G. F. Harrington and J. Santiso, Back-to-Basics Tutorial: X-Ray Diffraction of Thin Films, J Electroceram 47, 141 (2021).
[112] T. Konya, X-Ray Thin-Film Measurement Techniques III. High Resolution X-Ray Diffractometry, 2009.
[113] J. Lambert, PhotometriaSive de Mensura et Gradibus Luminis, Colorum et Umbrae(1760).
[114] Beer, Bestimmung Der Absorption Des Rothen Lichts in Farbigen Flüssigkeiten, Ann Phys 162, 78 (1852).
[115] J. I. Pankove and D. A. Kiewit, Optical Processes in Semiconductors, J Electrochem Soc 119, 156C (1972).
[116] P. Kubelka and F. Munk, An Article on Optics of Paint Layers, 1931. [117] S. Landi, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, and C. J. Tavares, Use and Misuse of the Kubelka-Munk Function to Obtain the Band Gap Energy from Diffuse Reflectance Measurements, Solid State Commun 341, 114573 (2022).
[118] J. Tauc, Amorphous and Liquid Semiconductors.(Plenum Press, London and NewYork, 1973).
[119] J. Tauc, Optical Properties and Electronic Structure of Amorphous Ge and Si, Mater Res Bull 3, 37 (1968).
[120] G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Phys Rev Lett 56, 930 (1986).
[121] R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy(Cambridge University Press, 1994).
[122] A. H. Nour, R. H. Modather, R. M. Yunus, A. A. M. Elnour, and N. A. Ismail, Characterization of Bioactive Compounds in Patchouli Oil Using Microwave-Assisted and Traditional Hydrodistillation Methods, Ind Crops Prod 208, 117901 (2024).
[123] K. C. A. Smith and C. W. Oatley, The Scanning Electron Microscope and Its Fields of Application, British Journal of Applied Physics 6, 391 (1955).
[124] M. Henini, Scanning Electron Microscopy: An Introduction, III-Vs Review 13, 40 (2000).
[125] T. Oikawa, Energy Dispersive X-Ray Spectroscopy, Japanese Journal of Tribology 51, 33 (2006).
[126] V.-D. Hodoroaba, Energy-Dispersive X-Ray Spectroscopy (EDS), in Characterization of Nanoparticles(Elsevier, 2020), pp. 397–417.
[127] J. H. Gross, Mass Spectrometry(Springer Berlin Heidelberg, Berlin, Heidelberg, 2011).
[128] S. Joo and H. Liang, Secondary Ion Mass Spectroscopy (SIMS), Encyclopedia of Tribology 2989 (2013).
[129] D. B. Williams and C. B. Carter, The Transmission Electron Microscope, Transmission Electron Microscopy 3 (2009).
[130] E. H. Hall, On a New Action of the Magnet on Electric Currents, American Journal of Mathematics 2, 287 (1879).
[131] D. K. Schroder, Semiconductor Material and Device Characterization(Wiley, 2005).
[132] E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, Transparent Conducting Oxides for Photovoltaics, MRS Bull 32, 242 (2007).
[133] Y. Yang, S. Jin, J. E. Medvedeva, J. R. Ireland, A. W. Metz, J. Ni, M. C. Hersam, A. J. Freeman, and T. J. Marks, CdO as the Archetypical Transparent Conducting Oxide. Systematics of Dopant Ionic Radius and Electronic Structure Effects on Charge Transport and Band Structure, J Am Chem Soc 127, 8796 (2005).
[135] J. Feng, S. Xiong, Y. Qian, and L. Yin, Synthesis of Nanosized Cadmium Oxide (CdO) as a Novel High Capacity Anode Material for Lithium-Ion Batteries: Influence of Carbon Nanotubes Decoration and Binder Choice, Electrochim Acta 129, 107 (2014).
[136] G. N. Maslennikova, I. V. Pishch, and N. A. Gvozdeva, Particularities of the Synthesis of Pigments with Corundum - Spinel Structure, Glass and Ceramics (English Translation of Steklo i Keramika) 66, 5 (2009).
[137] S. Ghosh, M. Saha, S. Paul, and S. K. De, Shape Controlled Plasmonic Sn Doped CdO Colloidal Nanocrystals: A Synthetic Route to Maximize the Figure of Merit of Transparent Conducting Oxide, Small 13, 1602469 (2017).
[138] L. Lindsay and D. S. Parker, Calculated Transport Properties of CdO: Thermal Conductivity and Thermoelectric Power Factor, Phys Rev B Condens Matter Mater Phys 92, 144301 (2015).
[139] S. Lany and A. Zunger, Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides, Phys Rev Lett 98, 045501 (2007).
[140] C. Aydın, H. M. El-Nasser, F. Yakuphanoglu, I. S. Yahia, and M. Aksoy, Nanopowder Synthesis of Aluminum Doped Cadmium Oxide via Sol–Gel Calcination Processing, J Alloys Compd 509, 854 (2011).
[141] F. Yakuphanoglu, Synthesis and Electro-Optic Properties of Nanosized-Boron Doped Cadmium Oxide Thin Films for Solar Cell Applications, Solar Energy 85, 2704 (2011).
[142] B. J. Zheng, J. S. Lian, L. Zhao, and Q. Jiang, Optical and Electrical Properties of In-Doped CdO Thin Films Fabricated by Pulse Laser Deposition, Appl Surf Sci 256, 2910 (2010).
[143] R. K. Gupta, F. Yakuphanoglu, and F. M. Amanullah, Band Gap Engineering of Nanostructure Cu Doped CdO Films, Physica E Low Dimens Syst Nanostruct 43, 1666 (2011).
[144] F. Yakuphanoglu, Preparation of Nanostructure Ni Doped CdO Thin Films by Sol Gel Spin Coating Method, J Solgel Sci Technol 59, 569 (2011).
[145] Z. Zhao, D. L. Morel, and C. S. Ferekides, Electrical and Optical Properties of Tin-Doped CdO Films Deposited by Atmospheric Metalorganic Chemical Vapor Deposition, Thin Solid Films 413, 203 (2002).
[146] A. Robert Xavier, A. T. Ravichandran, K. Ravichandran, S. Mantha, and D. Ravinder, Sm Doping Effect on Structural, Morphological, Luminescence and Antibacterial Activity of CdO Nanoparticles, Journal of Materials Science: Materials in Electronics 27, 11182 (2016).
[147] R. J. Deokate, S. M. Pawar, A. v. Moholkar, V. S. Sawant, C. A. Pawar, C. H. Bhosale, and K. Y. Rajpure, Spray Deposition of Highly Transparent Fluorine Doped Cadmium Oxide Thin Films, Appl Surf Sci 254, 2187 (2008).
[148] J. R. Bakke, C. Hägglund, H. J. Jung, R. Sinclair, and S. F. Bent, Atomic Layer Deposition of CdO and CdxZn1−xO Films, Mater Chem Phys 140, 465 (2013).
[149] H. Hobert and B. Seitmann, Infrared Study of SiO2/TiO2/CdO Layers on Glass Prepared by the Sol-Gel Method, J Non Cryst Solids 195, 54 (1996).
[151] J. Zúñiga-Pérez, C. Martínez-Tomás, and V. Muñoz-Saiyosé, X-Ray Characterization of CdO Thin Films Grown on a-, c-, r-And m-Plane Sapphire by Metalorganic Vapour Phase-Epitaxy, Physica Status Solidi C: Conferences 2, 1233 (2005).
[152] D. Lamb and S. J. C. Irvine, Near Infrared Transparent Conducting Cadmium Oxide Deposited by MOCVD, Thin Solid Films 518, 1222 (2009).
[153] A. A. Dakhel and F. Z. Henari, Optical Characterization of Thermally Evaporated Thin CdO Films, Crystal Research and Technology 38, 979 (2003).
[154] D. Ma, Z. Ye, L. Wang, J. Huang, and B. Zhao, Deposition and Characteristics of CdO Films with Absolutely (200)-Preferred Orientation, Mater Lett 58, 128 (2004).
[155] T. Terasako, K. Ohmae, M. Yamane, and S. Shirakata, Carrier Transport in Undoped CdO Films Grown by Atmospheric-Pressure Chemical Vapor Deposition, Thin Solid Films 572, 20 (2014).
[156] B. J. Kim, Y. W. Ok, T. Y. Seong, A. B. M. A. Ashrafi, H. Kumano, and I. Suemune, Structural Properties of CdO Layers Grown on GaAs (001) Substrates by Metalorganic Molecular Beam Epitaxy, J Cryst Growth 252, 219 (2003).
[157] R. A. Ismail, B. G. Rasheed, E. T. Salm, and M. Al-Hadethy, High Transmittance–Low Resistivity Cadmium Oxide Films Grown by Reactive Pulsed Laser Deposition, Journal of Materials Science: Materials in Electronics 18, 1027 (2007).
[158] P. Sakthivel, R. Murugan, S. Asaithambi, M. Karuppaiah, S.Rajendran, and G. Ravi, Radio Frequency Magnetron Sputtered CdO Thin Films for Optoelectronic Applications, Journal of Physics and Chemistry of Solids 126, 1 (2019).
[159] J. R. Bakke, C. Hägglund, H. J. Jung, R. Sinclair, and S. F. Bent, Atomic Layer Deposition of CdO and CdxZn1−xO Films, Mater Chem Phys 140, 465 (2013).
[160] D. Lamb and S. J. C. Irvine, Near Infrared Transparent Conducting Cadmium Oxide Deposited by MOCVD, Thin Solid Films 518, 1222 (2009).
[161] Y. Zhu, R. J. Mendelsberg, J. Zhu, J. Han, and A. Anders, Transparent and Conductive Indium Doped Cadmium Oxide Thin Films Prepared by Pulsed Filtered Cathodic Arc Deposition, Appl Surf Sci 265, 738 (2013).
[162] K. Ploog, Molecular Beam Epitaxy of III-V Compounds: Application of MBE-Grown Films, Annual Review of Materials Science 12, 123 (1982).
[163] T. D. Moustakas, E. Iliopoulos, A. V. Sampath, H. M. Ng, D. Doppalapudi, M. Misra, D. Korakakis, and R. Singh, Growth and Device Applications of III-Nitrides by MBE, J Cryst Growth 227–228, 13 (2001).
[164] M. S. Akselrod and F. J. Bruni, Modern Trends in Crystal Growth and New Applications of Sapphire, J Cryst Growth 360, 134 (2012).
[165] F. Bernardini, Spontaneous and Piezoelectric Polarization: Basic Theory vs. Practical Recipes, in Nitride Semiconductor Devices: Principles and Simulation(Wiley, 2007), pp. 49–68.
[166] K. Shi et al., The Effect of Different Oriented Sapphire Substrates on the Growth of Polar and Non-Polar ZnMgO by MOCVD, J Cryst Growth 314, 39 (2011).
[168] P. Vogt, A. Trampert, M. Ramsteiner, and O. Bierwagen, Domain Matching Epitaxy of Cubic In2O3 on R-Plane Sapphire, Physica Status Solidi (A) Applications and Materials Science 212, 1433 (2015).
[169] R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer, High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg, J Phys Chem Ref Data 16, 419 (2009).
[170] D. Papajová, Š. Németh, W. E. Hagston, H. Sitter, and M. Veselý, A Study of a Kinetic Rate Equation Model for Simulations of MBE Crystal Growth: A Comparison with Monte Carlo Simulations, Thin Solid Films 267, 47 (1995).
[171] A. Cimino and M. Marezio, Lattice Parameter and Defect Structure of Cadmium Oxide Containing Foreign Atoms, Journal of Physics and Chemistry of Solids 17, 57 (1960).
[172] E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, Roughness Parameters, J Mater Process Technol 123, 133 (2002).
[173] A. B. M. A. Ashrafi, H. Kumano, I. Suemune, Y. W. Ok, and T. Y. Seong, CdO Epitaxial Layers Grown on (001) GaAs Surfaces by Metalorganic Molecular-Beam Epitaxy, J Cryst Growth 237–239, 518 (2002).
[174] A. A. Yousif and M. H. Hasan, Gas Sensitivity and Morphologically Characterized of Nanostructure CdO Doped In2O3 Films Deposited by Pulsed Laser Deposition, J Biosens Bioelectron 06, (2015).
[175] D. M. Carballeda-Galicia, R. Castanedo-Pérez, O. Jiménez-Sandoval, S. Jiménez-Sandoval, G. Torres-Delgado, and C. I. Zúñiga-Romero, High Transmittance CdO Thin Films Obtained by the Sol-Gel Method, Thin Solid Films 371, 105 (2000).
[176] A. Abdolahzadeh Ziabari, F. E. Ghodsi, and G. Kiriakidis, Correlation between Morphology and Electro-Optical Properties of Nanostructured CdO Thin Films: Influence of Al Doping, Surf Coat Technol 213, 15 (2012).
[177] I. S. Yahia, G. F. Salem, M. S. Abd El-Sadek, and F. Yakuphanoglu, Optical Properties of Al-CdO Nano-Clusters Thin Films, Superlattices Microstruct 64, 178 (2013).
[178] P. Sakthivel, R. Murugan, S. Asaithambi, M. Karuppaiah, S.Rajendran, and G. Ravi, Radio Frequency Magnetron Sputtered CdO Thin Films for Optoelectronic Applications, Journal of Physics and Chemistry of Solids 126, 1 (2019).
[179] R. R. Salunkhe, D. S. Dhawale, D. P. Dubal, and C. D. Lokhande, Sprayed CdO Thin Films for Liquefied Petroleum Gas (LPG) Detection, Sens Actuators B Chem 140, 86 (2009).
[180] F. G. Hammoodi, A. A. Shuihab, and S. A. Ebrahiem, Studying The Topographic and Morphology Structure of CdO:In Thin Films, J Phys Conf Ser 1963, 012121 (2021).
[181] J. Zúñiga-Pérez, C. Martínez-Tomás, and V. Muñoz-Saiyosé, X-Ray Characterization of CdO Thin Films Grown on a-, c-, r-and m-Plane Sapphire by Metalorganic Vapour Phase-Epitaxy, Physica Status Solidi (c) 2, 1233 (2005).
[182] J. Zúñiga-Pérez, C. Martínez-Tomás, V. Muñoz-Sanjosé, C. Munuera, C. Ocal, and M. Laügt, Faceting and Structural Anisotropy of Nanopatterned CdO(110) Layers, J Appl Phys 98, 034311 (2005).
[183] P. F. Fewster, X-Ray Scattering from Semiconductors(PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2003).
[185] N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, S. W. Gosavi, and S. R. Jadkar, Determination of the Optical Parameters of A-Si:H Thin Films Deposited by Hot Wire-Chemical Vapour Deposition Technique Using Transmission Spectrum Only, Pramana - Journal of Physics 76, 519 (2011).
[186] R. A. Zargar, ZnCdO Thick Film: A Material for Energy Conversion Devices, Mater Res Express 6, 095909 (2019).
[187] A. A. Ziabari and F. E. Ghodsi, Optoelectronic Studies of Sol–Gel Derived Nanostructured CdO–ZnO Composite Films, J Alloys Compd 509, 8748 (2011).
[188] K. A. Borup, E. S. Toberer, L. D. Zoltan, G. Nakatsukasa, M. Errico, J. P. Fleurial, B. B. Iversen, and G. J. Snyder, Measurement of the Electrical Resistivity and Hall Coefficient at High Temperatures, Review of Scientific Instruments 83, 123902 (2012).
[189] R. Chaurasiya and A. Dixit, Point Defects Induced Magnetism in CdO Monolayer: A Theoretical Study, J Magn Magn Mater 469, 279 (2019).
[190] E. Sachet et al., Dysprosium-Doped Cadmium Oxide as a Gateway Material for Mid-Infrared Plasmonics, Nature Materials 2014 14:4 14, 414 (2015).
[191] Ç. Kiliç and A. Zunger, N-Type Doping of Oxides by Hydrogen, Appl Phys Lett 81, 73 (2002).
[192] S. F. J. Cox, J. S. Lord, S. P. Cottrell, J. M. Gil, H. V. Alberto, A. Keren, D. Prabhakaran, R. Scheuermann, and A. Stoykov, Oxide Muonics: I. Modelling the Electrical Activity of Hydrogen in Semiconducting, Journal of Physics: Condensed Matter 18, 1061 (2006).
[193] M. Burbano, D. O. Scanlon, and G. W. Watson, Sources of Conductivity and Doping Limits in CdO from Hybrid Density Functional Theory, J Am Chem Soc 133, 15065 (2011).
[194] S. J. Clark, J. Robertson, S. Lany, and A. Zunger, Intrinsic Defects in ZnO Calculated by Screened Exchange and Hybrid Density Functionals, Phys Rev B Condens Matter Mater Phys 81, 115311 (2010).
[195] J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van De Walle, Oxygen Vacancies and Donor Impurities in β-Ga2 O 3, Appl Phys Lett 97, 142106 (2010).
[196] A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van De Walle, Sources of Electrical Conductivity in SnO2, Phys Rev Lett 101, 055502 (2008).
[197] J. L. Lyons, A. Janotti, and C. G. Van de Walle, Theory and Modeling of Oxide Semiconductors, Semiconductors and Semimetals 88, 1 (2013).
[198] R. J. Mendelsberg, Y. Zhu, and A. Anders, Determining the Nonparabolicity Factor of the CdO Conduction Band Using Indium Doping and the Drude Theory, J Phys D Appl Phys 45, 425302 (2012).
[199] H. M. Ali, H. A. Mohamed, M. M. Wakkad, and M. F. Hasaneen, Properties of Transparent Conducting Oxides Formed from CdO Alloyed with In2O3, Thin Solid Films 515, 3024 (2007).
[200] S. Mokkapati and C. Jagadish, III-V Compound SC for Optoelectronic Devices, Materials Today 12, 22 (2009).
[201] B. Saha, R. Thapa, and K. K. Chattopadhyay, Bandgap Widening in Highly Conducting CdO Thin Film by Ti Incorporation through Radio Frequency Magnetron Sputtering Technique, Solid State Commun 145, 33 (2008).
[203] B. Saha, S. Das, and K. K. Chattopadhyay, Electrical and Optical Properties of Al Doped Cadmium Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering, Solar Energy Materials and Solar Cells 91, 1692 (2007).
[204] X. Li, Y. Yan, A. Mason, T. A. Gessert, and T. J. Coutts, High Mobility CdO Films and Their Dependence on Structure, Electrochemical and Solid-State Letters 4, C66 (2001).
[205] B. J. Zheng, J. S. Lian, L. Zhao, and Q. Jiang, Optical and Electrical Properties of Sn-Doped CdO Thin Films Obtained by Pulse Laser Deposition, Vacuum 85, 861 (2011).
[206] R. J. Deokate, S. V. Salunkhe, G. L. Agawane, B. S. Pawar, S. M. Pawar, K. Y. Rajpure, A. V. Moholkar, and J. H. Kim, Structural, Optical and Electrical Properties of Chemically Sprayed Nanosized Gallium Doped CdO Thin Films, J Alloys Compd 496, 357 (2010).
[207] A. A. Dakhel, Structural, Optical and Electrical Measurements on Boron-Doped CdO Thin Films, J Mater Sci 46, 6925 (2011).
[208] A. A. Dakhel, Effect of Thallium Doping on the Electrical and Optical Properties of CdO Thin Films, Physica Status Solidi (A) Applications and Materials Science 205, 2704 (2008).
[209] M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, Highly Conductive Epitaxial Cdo Thin Films Prepared by Pulsed Laser Deposition, Appl Phys Lett 78, 2342 (2001).
[210] J. R. Nolen, E. L. Runnerstrom, K. P. Kelley, T. S. Luk, T. G. Folland, A. Cleri, J. P. Maria, and J. D. Caldwell, Ultraviolet to Far-Infrared Dielectric Function of n - Doped Cadmium Oxide Thin Films, Phys Rev Mater 4, 025202 (2020).
[211] S. Jin, Y. Yang, J. E. Medvedeva, J. R. Ireland, A. W. Metz, J. Ni, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, Dopant Ion Size and Electronic Structure Effects on Transparent Conducting Oxides. Sc-Doped CdO Thin Films Grown by MOCVD, J Am Chem Soc 126, 13787 (2004).
[212] K. T. R. Reddy, G. M. Shanthini, D. Johnston, and R. W. Miles, Highly Transparent and Conducting CdO Films Grown by Chemical Spray Pyrolysis, Thin Solid Films 427, 397 (2003).
[213] K. F. Berggren and B. E. Sernelius, Band-Gap Narrowing in Heavily Doped Many-Valley Semiconductors, Phys Rev B 24, 1971 (1981).
[214] O. Madelung, Semiconductors: Data Handbook(Springer Berlin Heidelberg, Berlin, Heidelberg, 2004).
[215] B. T. Liu, K. Maki, S. Aggarwal, B. Nagaraj, V. Nagarajan, L. Salamanca-Riba, R. Ramesh, A. M. Dhote, and O. Auciello, Low-Temperature Integration of Lead-Based Ferroelectric Capacitors on Si with Diffusion Barrier Layer, Appl Phys Lett 80, 3599 (2002).
[216] H. J. Osten, A. Laha, M. Czernohorsky, E. Bugiel, R. Dargis, and A. Fissel, Introducing Crystalline Rare-Earth Oxides into Si Technologies, Physica Status Solidi (a) 205, 695 (2008).
[217] G. Chistiakova, B. MacCo, and L. Korte, Low-Temperature Atomic Layer Deposited Magnesium Oxide as a Passivating Electron Contact for c-Si-Based Solar Cells, IEEE J Photovolt 10, 398 (2020).
[218] R. Guinebretière, X-ray Diffraction by Polycrystalline Materials(Wiley, 2007).
[219] E. J. Mittemeijer and U. Welzel, The “State of the Art” of the Diffraction Analysis of Crystallite Size and Lattice Strain, Zeitschrift Fur Kristallographie 223, 552 (2008).
[221] M. Caglar and F. Yakuphanoglu, Fabrication and Electrical Characterization of Flower-like CdO/p-Si Heterojunction Diode, J Phys D Appl Phys 42, 045102 (2009).
[222] F. Yakuphanoglu, M. Caglar, Y. Caglar, and S. Ilican, Electrical Characterization of Nanocluster N-CdO/p-Si Heterojunction Diode, J Alloys Compd 506, 188 (2010).
[223] S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, Photovoltaic Solar Cell Properties of CdxZn1−xO Films Prepared by Sol–Gel Method, Int J Hydrogen Energy 34, 5201 (2009).
[224] S. Aksoy, Y. Caglar, S. Ilican, and M. Caglar, Effect of Heat Treatment on Physical Properties of CdO Films Deposited by Sol–Gel Method, Int J Hydrogen Energy 34, 5191 (2009).
[225] Y. Caglar, M. Caglar, S. Ilican, and A. Ates, Morphological, Optical and Electrical Properties of CdZnO Films Prepared by Sol–Gel Method, J Phys D Appl Phys 42, 065421 (2009).
[226] H. Puthiyottil, P. R. Thankamani, and K. J. Saji, Exploring the Effects of Substrate and Substrate Temperature on the Properties of Radio Frequency Magnetron Sputtered ZnO Thin Films, Mater Today Commun 36, 106455 (2023).
[227] N. Tripathi, S. Rath, V. Ganesan, and R. J. Choudhary, Growth Dynamics of Pulsed Laser Deposited Indium Oxide Thin Films: A Substrate Dependent Study, Appl Surf Sci 256, 7091 (2010).
[228] U. Bashir, Z. Hassan, and N. M. Ahmed, A Comparative Study of InN Growth on Quartz, Silicon, C-Sapphire and Bulk GaN Substrates by RF Magnetron Sputtering, Journal of Materials Science: Materials in Electronics 28, 9228 (2017).
[229] S. K. Vasheghani Farahani, V. Muñoz-Sanjosé, J. Zúñiga-Pérez, C. F. McConville, and T. D. Veal, Temperature Dependence of the Direct Bandgap and Transport Properties of CdO, Appl Phys Lett 102, 022102 (2013).
[230] G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon, Phys Rev Lett 47, 1480 (1981).
[231] S. M. Wasim, G. Marín, C. Rincón, and G. Sánchez Pérez, Urbach–Martienssen’s Tail in the Absorption Spectra of the Ordered Vacancy Compound CuIn3Se5, J Appl Phys 84, 5823 (1998).
[232] B. Pejova, B. Abay, and I. Bineva, Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films, Journal of Physical Chemistry C 114, 15280 (2010).
[233] R. C. Rai, Analysis of the Urbach Tails in Absorption Spectra of Undoped ZnO Thin Films, J Appl Phys 113, 153508 (2013).
[234] M. A. Islam, M. S. Hossain, M. M. Aliyu, P. Chelvanathan, Q. Huda, M. R. Karim, K. Sopian, and N. Amin, Comparison of Structural and Optical Properties of CdSThin Films Grown by CSVT, CBD and Sputtering Techniques, Energy Procedia 33, 203 (2013).
[235] S. H. Wemple and M. DiDomenico, Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials, Phys Rev B 3, 1338 (1971).
[236] Z. Serbetci, B. Gunduz, A. A. Al-Ghamdi, F. Al-Hazmic, K. Arik, F. El-Tantawy, F. Yakuphanoglu, and W. A. Farooq, Determination of Optical Constants of Nanocluster CdO Thin Films Deposited by Sol-Gel Technique, Acta Phys Pol A 126, 798 (2014).
[237] I. S. Yahia, G. F. Salem, J. Iqbal, and F. Yakuphanoglu, Linear and Nonlinear Optical Discussions of Nanostructured Zn-Doped CdO Thin Films, Physica B Condens Matter 511, 54 (2017).
[239] P. Bi et al., A High-Performance Nonfused Wide-Bandgap Acceptor for Versatile Photovoltaic Applications, Advanced Materials 34, 2108090 (2022).
[240] R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, and F. Rosei, Bandgap Tuning of Multiferroic Oxide Solar Cells, Nature Photonics 2014 9:1 9, 61 (2014).
[241] R. G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bull 25, 52 (2000).
[242] D. Han, S. Han, Z. Bu, Y. Deng, C. Liu, and W. Guo, Flexible Color Tunability and High Transmittance Semitransparent Organic Solar Cells, Solar RRL 6, 2200441 (2022).
[243] N. Suresh Kumar and K. Chandra Babu Naidu, A Review on Perovskite Solar Cells (PSCs), Materials and Applications, Journal of Materiomics 7, 940 (2021).
[244] L. M. Guia, V. Sallet, C. Sartel, M. C. Martínez-Tomás, and V. Muñoz-Sanjosé, Growth and Characterization of Mg1-XCdxO Thin Films, Physica Status Solidi (C) Current Topics in Solid State Physics 13, 452 (2016).
[245] L. M. Guia, V. Sallet, S. Hassani, M. C. Martínez-Tomás, and V. Muñoz-Sanjosé, Effect of Growth Temperature on the Structural and Morphological Properties of MgCdOThin Films Grown by Metal Organic Chemical Vapor Deposition, Cryst Growth Des 17, 6303 (2017).
[246] S. R. Achary, S. Agouram, J. F. Sánchez-Royo, M. C. Martínez-Tomás, and V. Muñoz-Sanjosé, Growth and Characterization of Self-Assembled Cd1-XMgxO (0 ≤ x ≤ 1) Nanoparticles on r-Sapphire Substrates, CrystEngComm 16, 8969 (2014).
[247] B. Amin, I. Ahmad, M. Maqbool, N. Ikram, Y. Saeed, A. Ahmad, and S. Arif, Generalized Gradient Calculations of Structural, Electronic and Optical Properties of MgxCd1-XO Oxides, J Alloys Compd 493, 212 (2010).
[248] K. B. Joshi, U. Paliwal, K. L. Galav, D. K. Trivedi, and T. Bredow, Study of MgxCd1−xO Applying Density Functional Theory: Stability, Structural Phase Transition and Electronic Properties, J Solid State Chem 204, 367 (2013).
[249] K. Usharani, A. R. Balu, V. S. Nagarethinam, and M. Suganya, Characteristic Analysis on the Physical Properties of Nanostructured Mg-Doped CdO Thin Films—Doping Concentration Effect, Progress in Natural Science: Materials International 25, 251 (2015).
[250] V. Pishchik, L. A. Lytvynov, and E. R. Dobrovinskaya, Sapphire(Springer US, Boston, MA, 2009).
[251] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, Nitride-Based LEDs Fabricated on Patterned Sapphire Substrates, Solid State Electron 47, 1539 (2003).
[252] J. H. Ryou and W. Lee, GaN on Sapphire Substrates for Visible Light-Emitting Diodes, Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications: Second Edition 43 (2018).
[253] R. Delmdahl, R. Pätzel, and J. Brune, Large-Area Laser-Lift-Off Processing in Microelectronics, Phys Procedia 41, 241 (2013).
[254] K. Matsuzaki, H. Hosono, and T. Susaki, Layer-by-Layer Epitaxial Growth of Polar MgO(111) Thin Films, Phys Rev B Condens Matter Mater Phys 82, 033408 (2010).
[255] J. Zuñiga-Pérez, C. Munuera, C. Ocal, and V. Muñoz-Sanjosé, Structural Analysis of CdO Layers Grown on R-Plane Sapphire (011¯2) by Metalorganic Vapor-Phase Epitaxy, J Cryst Growth 271, 223 (2004).
[257] J. M. Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, Surface Segregation of Third-Column Atoms in Group III-V Arsenide Compounds: Ternary Alloys and Heterostructures, Phys Rev B 40, 6149 (1989).
[258] R. Gong, J. Wang, S. Liu, Z. Dong, M. Yu, C. P. Wen, Y. Cai, and B. Zhang, Analysis of Surface Roughness in Ti/Al/Ni/Au Ohmic Contact to AlGaN/GaN High Electron Mobility Transistors, Appl Phys Lett 97, 58 (2010).
[259] A. Fouzri, M. A. Boukadhaba, A. Touré, N. Sakly, A. Bchetnia, and V. Sallet, Structural, Morphological and Optical Properties of Cd Doped ZnO Film Grown on a-and r-Plane Sapphire Substrate by MOCVD, Appl Surf Sci 311, 648 (2014).
[260] A. Fouzri, V. Sallet, and M. Oumezzine, A Comparative Structure and Morphology Study of Zn(1−x)CdxO Solid Solution Grown on ZnO and Different Sapphire Orientations, J Cryst Growth 331, 18 (2011).
[261] E. Przezdziecka, E. Guziewicz, D. Jarosz, D. Snigurenko, A. Sulich, P. Sybilski, R. Jakiela, and W. Paszkowicz, Influence of Oxygen-Rich and Zinc-Rich Conditions on Donor and Acceptor States and Conductivity Mechanism of ZnO Films Grown by ALD—Experimental Studies, J Appl Phys 127, 075104 (2020).
[262] S. Karakaya and O. Ozbas, Optical, Electrical and Surface Properties of Annealed CdO:Mg Thin Films Prepared by Spray Pyrolysis, AIP Conf Proc 1569, 253 (2013).
[263] M. A. Boukadhaba, W. Chebil, A. Fouzri, V. Sallet, A. Lusson, G. Amiri, C. Vilar, and M. Oumezzine, Effect of Sapphire Substrate Orientations on the Microstructural, Optical and NO2 Gas Sensing Properties of Zn(1−x)CdxO Thin Films Synthesized by Sol Gel Spin-Coating Method, Superlattices Microstruct 94, 158 (2016).
[264] C. He, Q. Wu, X. Wang, Y. Zhang, L. Yang, N. Liu, Y. Zhao, Y. Lu, and Z. Hu, Growth and Characterization of Ternary AlGaN Alloy Nanocones across the Entire Composition Range, ACS Nano 5, 1291 (2011).
[265] Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography, X-Ray Diffraction Crystallography (2011).
[266] J. I. Langford, A Rapid Method for Analysing the Breadths of Diffraction and Spectral Lines Using the Voigt Function, J Appl Crystallogr 11, 10 (1978).
[267] F. R. L. Schoening, Strain and Particle Size Values from X-Ray Line Breadths, Acta Crystallogr 18, 975 (1965).
[268] N. Rani, S. Chahal, A. S. Chauhan, P. Kumar, R. Shukla, and S. K. Singh, X-Ray Analysis of MgO Nanoparticles by Modified Scherer’s Williamson-Hall and Size-Strain Method, Mater Today Proc 12, 543 (2019).
[269] K. Maniammal, G. Madhu, and V. Biju, X-Ray Diffraction Line Profile Analysis of Nanostructured Nickel Oxide: Shape Factor and Convolution of Crystallite Size and Microstrain Contributions, Physica E Low Dimens Syst Nanostruct 85, 214 (2017).
[270] Th. H. de Keijser, J. I. Langford, E. J. Mittemeijer, and A. B. P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-Ray Diffraction Line Broadening, J Appl Crystallogr 15, 308 (1982).
[271] K. He, N. Chen, C. Wang, L. Wei, and J. Chen, Method for Determining Crystal Grain Size by X-Ray Diffraction, Crystal Research and Technology 53, 1700157 (2018).
[273] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992), Google Scholar 128 (2002).
[274] S. Gowrishankar, L. Balakrishnan, and N. Gopalakrishnan, Band Gap Engineering in Zn(1-x)CdxO and Zn (1-x)MgxO Thin Films by RF Sputtering, Ceram Int 40, 2135 (2014).
[275] Y. Lee, C. P. Liu, K. M. Yu, and W. Walukiewicz, Engineering Electronic Band Structure of Indium-Doped Cd1−xMgxO Alloys for Solar Power Conversion Applications, Energy Technology 6, 122 (2018).
[276] G. Chen, K. M. Yu, L. A. Reichertz, and W. Walukiewicz, Material Properties of Cd1-XMgxO Alloys Synthesized by Radio Frequency Sputtering, Appl Phys Lett 103, 1 (2013).
[277] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band Parameters for III–V Compound Semiconductors and Their Alloys, J Appl Phys 89, 5815 (2001).
[278] N. TIT, N. AMRANE, and A. H. RESHAK, ELECTRONEGATIVITY EFFECTS ON THE BANDGAP BOWING CHARACTERS IN COMPOUND-SEMICONDUCTOR TERNARY ALLOYS, Int J Nanosci 09, 609 (2010).
[279] A. Zunger and J. E. Jaffe, Structural Origin of Optical Bowing in Semiconductor Alloys, Phys Rev Lett 51, 662 (1983).
[280] J. E. Bernard and A. Zunger, Electronic Structure of ZnS, ZnSe, ZnTe, and Their Pseudobinary Alloys, Phys Rev B 36, 3199 (1987).
[281] J. Huso, H. Che, and D. Thapa, Phonon Dynamics and Urbach Energy Studies of MgZnO Alloys, J. Appl. Phys 117, 125702 (2015).
[282] A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, Optical Absorption and Light Scattering in Microcrystalline Silicon Thin Films and Solar Cells, J Appl Phys 88, 148 (2000).
[283] D. Ristau and H. Ehlers, Thin Film Optical Coatings, in (Springer, New York, NY, 2007), pp. 373–396.
[284] C. Kaiser, O. J. Sandberg, N. Zarrabi, W. Li, P. Meredith, and A. Armin, A Universal Urbach Rule for Disordered Organic Semiconductors, Nature Communications 2021 12:1 12, 1 (2021).
[285] H. Hosono, Recent Progress in Transparent Oxide Semiconductors: Materials and Device Application, Thin Solid Films 515, 6000 (2007).
[286] M. Zhu et al., Photo-Induced Selective Gas Detection Based on Reduced Graphene Oxide/Si Schottky Diode, Carbon N Y 84, 138 (2015).
[287] K. J. Hubbard and D. G. Schlom, Thermodynamic Stability of Binary Oxides in Contact with Silicon, J Mater Res 11, 2757 (1996).
[288] J. G. Yoon and K. Kim, Growth of Highly Textured LiNbO3 Thin Film on Si with MgO Buffer Layer through the Sol-gel Process, Appl Phys Lett 68, 2523 (1996).
[289] M. Fujita, N. Kawamoto, M. Sasajima, and Y. Horikoshi, Molecular Beam Epitaxy Growth of ZnO Using Initial Zn Layer and MgO Buffer Layer on Si(111) Substrates, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22, 1484 (2004).
[290] D. Reisinger et al., Epitaxy of Fe3O4 on Si(001) by Pulsed Laser Deposition Using a TiN/MgO Buffer Layer, J Appl Phys 94, 1857 (2003).
[292] F. Niu, A. L. Meier, and B. W. Wessels, Epitaxial Growth and Strain Relaxation of MgO Thin Films on Si Grown by Molecular Beam Epitaxy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 24, 2586 (2006).
[293] J. G. Yoon and K. Kim, Growth of (111) Oriented MgO Film on Si Substrate by the Sol-gel Method, Appl Phys Lett 66, 2661 (1995).
[294] Y. Kaneko, N. Mikoshiba, and T. Yamashita, Preparation of Mgo Thin Films by Rf Magnetron Sputtering, Jpn J Appl Phys 30, 1091 (1991).
[295] Y. Li, G. Xiong, G. Lian, J. Li, and Z. Gan, Epitaxial Growth of MgO Thin Films on Silicon by Dual Ion Beam Sputtering, Thin Solid Films 223, 11 (1993).
[296] T. Abukawa, S. Sato, and Y. Matsuoka, Characterization of Epitaxial MgO Growth on Si(001) Surface, Surf Sci 604, 1614 (2010).
[297] T. Chen, X. M. Li, S. Zhang, and H. R. Zeng, Oxygen-Pressure Dependence of the Crystallinity of MgO Films Grown on Si(100) by PLD, J Cryst Growth 270, 553 (2004).
[298] M. Ning, Y. Y. Mi, C. K. Ong, P. C. Lim, and S. J. Wang, Growth Studies of (2 2 0), (2 0 0) and (1 1 1) Oriented MgO Films on Si (0 0 1) without Buffer Layer, J Phys D Appl Phys 40, 3678 (2007).
[299] T. Chen, X. M. Li, and S. Zhang, Enhanced Strain Relaxation Induced by Epitaxial Layer Growth Mode of MgO Thin Films, Solid State Commun 131, 523 (2004).
[300] P. A. Stampe and R. J. Kennedy, Growth of MgO on Si(100) and GaAs(100) by Laser Ablation, Thin Solid Films 326, 63 (1998).
[301] R. A. Ismail and O. A. Abdulrazaq, A New Route for Fabricating CdO/c-Si Heterojunction Solar Cells, Solar Energy Materials and Solar Cells 91, 903 (2007).
[302] R. H. Al Orainy and A. A. Hendi, Fabrication and Electrical Characterization of CdO/p-Si Photosensors, Microelectron Eng 127, 14 (2014).
[303] F. Yakuphanoglu, M. Caglar, Y. Caglar, and S. Ilican, Electrical Characterization of Nanocluster N-CdO/p-Si Heterojunction Diode, J Alloys Compd 506, 188 (2010).
[304] M. A. Pietrzyk, E. Zielony, M. Stachowicz, A. Reszka, E. Płaczek-Popko, A. Wierzbicka, E. Przezdziecka, A. Droba, and A. Kozanecki, Electro-Optical Characterization of ZnO/ZnMgO Structure Grown on p-Type Si (111) by PA-MBE Method, J Alloys Compd 587, 724 (2014).
[305] P. Zaumseil, High-Resolution Characterization of the Forbidden Si 200 and Si 222 Reflections, J Appl Crystallogr 48, 528 (2015).
[306] D. K. Fork, F. A. Ponce, J. C. Tramontana, and T. H. Geballe, Epitaxial MgO on Si(001) for Y-Ba-Cu-O Thin-film Growth by Pulsed Laser Deposition, Appl Phys Lett 58, 2294 (1991).
[307] A. Escobedo-Morales, I. I. Ruiz-L opez, M. Ruiz-Peralta, L. Tepech-Carrillo, M. S. anchez-Cant, and J. E. Moreno-Orea, Automated Method for the Determination of the Band Gap Energy of Pure and Mixed Powder Samples Using Diffuse Reflectance Spectroscopy, (n.d.).
[308] E. E. Mendez and K. von Klitzing, editors , Physics and Applications of Quantum Wells and Superlattices, 170, (1987).
[309] L. W. Whitlow and T. Hirano, Superlattice Applications to Thermoelectricity, J Appl Phys 78, 5460 (1995).
[311] M. Kobayashi, J. Ueno, M. Enami, S. Katsuta, A. Ichiba, K. Ogura, K. Onomitsu, and Y. Horikoshi, Growth and UV-A Sensor Applications of MgCdS/ZnCdS Superlattices, J Cryst Growth 278, 273 (2005).
[312] Y. Huang et al., Graphene Oxide/Hexylamine Superlattice Field-Effect Biochemical Sensors, Adv Funct Mater 31, 2010563 (2021).
[313] A. Rogalski, P. Martyniuk, and M. Kopytko, InAs/GaSb Type-II Superlattice Infrared Detectors: Future Prospect, Appl Phys Rev 4, (2017).
[314] C. W. Jiang and M. A. Green, Silicon Quantum Dot Superlattices: Modeling of Energy Bands, Densities of States, and Mobilities for Silicon Tandem Solar Cell Applications, J Appl Phys 99, 114902 (2006).
[315] D. F. Reyes, V. Braza, A. Gonzalo, A. D. Utrilla, J. M. Ulloa, T. Ben, and D. González, Modelling of the Sb and N Distribution in Type II GaAsSb/GaAsN Superlattices for Solar Cell Applications, Appl Surf Sci 442, 664 (2018).
[316] K. Miyamoto, M. Sano, H. Kato, and T. Yao, High-Electron-Mobility ZnO Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy, J Cryst Growth 265, 34 (2004).
[317] J. Ma, X. Zhu, K. M. Wong, X. Zou, and K. M. Lau, Improved GaN-Based LED Grown on Silicon (111) Substrates Using Stress/Dislocation-Engineered Interlayers, J Cryst Growth 370, 265 (2013).
[318] T. Lang, M. A. Odnoblyudov, V. E. Bougrov, A. E. Romanov, S. Suihkonen, M. Sopanen, and H. Lipsanen, Multistep Method for Threading Dislocation Density Reduction in MOCVD Grown GaN Epilayers, Physica Status Solidi (a) 203, R76 (2006).
[319] A. Bakin, J. Kioseoglou, B. Pecz, A. El-Shaer, A. C. Mofor, J. Stoemenos, and A. Waag, Misfit Reduction by a Spinel Layer Formed during the Epitaxial Growth of ZnO on Sapphire Using a MgO Buffer Layer, J Cryst Growth 308, 314 (2007).
[320] V. Petukhov, A. Bakin, I. Tsiaoussis, J. Rothman, S. Ivanov, J. Stoemenos, and A. Waag, Implementation of ZnO/ZnMgO Strained-Layer Superlattice for ZnO Heteroepitaxial Growth on Sapphire, J Cryst Growth 323, 111 (2011).
[321] E. Bauer and J. H. Van Der Merwe, Structure and Growth of Crystalline Superlattices: From Monolayer to Superlattice, Phys Rev B 33, 3657 (1986).
[322] I. Gorczyca, T. Suski, G. Staszczak, N. E. Christensen, A. Svane, X. Wang, E. Dimakis, and T. Moustakas, InN/GaN Superlattices: Band Structures and Their Pressure Dependence, Jpn J Appl Phys 52, 08JL06 (2013).
[323] M. Stachowicz, M. Pietrzyk, D. Jarosz, P. Dluzewski, E. Alves, and A. Kozanecki, Backscattering Analysis of Short Period ZnO/MgO Superlattices, Surf Coat Technol 355, 45 (2018).
[324] M. Stachowicz, J. M. Sajkowski, A. Wierzbicka, E. Przezdziecka, M. A. Pietrzyk, E. Dynowska, S. Magalhaes, E. Alves, and A. Kozanecki, Nonpolar Short-Period ZnO/MgO Superlattices: Radiative Excitons Analysis, J Lumin 238, 118288 (2021).
[325] M. Stachowicz et al., Structural Analysis of the ZnO/MgO Superlattices on a-Polar ZnO Substrates Grown by MBE, Appl Surf Sci 587, 152830 (2022).
[326] E. R. SEGNIT and A. E. HOLLAND, The System MgO-ZnO-SiO2, Journal of the American Ceramic Society 48, 409 (1965).
[328] A. Lysak, E. Przeździecka, R. Jakiela, A. Reszka, B. Witkowski, Z. Khosravizadeh, A. Adhikari, J. M. Sajkowski, and A. Kozanecki, Effect of Rapid Thermal Annealing on Short Period {CdO/ZnO}m SLs Grown on m-Al2O3, Mater Sci Semicond Process 142, 106493 (2022).
[329] A. Lysak, E. Przeździecka, A. Wierzbicka, P. Dłużewski, J. Sajkowski, K. Morawiec, and A. Kozanecki, The Influence of the Growth Temperature on the Structural Properties of {CdO/ZnO}30 Superlattices, Cryst Growth Des 23, 134 (2023).
[330] R. L. Hengehold and F. L. Pedrotti, Plasmon Excitation Energies in ZnO, CdO, and MgO, J Appl Phys 47, 287 (1976).
[331] E. Przezdziecka, A. Wierzbicka, P. Dłuzewski, I. Sankowska, P. Sybilski, K. Morawiec, M. A. Pietrzyk, and A. Kozanecki, Short-Period CdO/MgO Superlattices as Cubic CdMgO Quasi-Alloys, Cryst Growth Des 20, 5466 (2020).
[332] E. D. Grimley, A. P. Wynn, K. P. Kelley, E. Sachet, J. S. Dean, C. L. Freeman, J.-P. Maria, and J. M. LeBeau, Complexities of Atomic Structure at CdO/MgO and CdO/Al 2O 3 Interfaces, J Appl Phys 124, 205302 (2018).
[333] S. Takagi, A Dynamical Theory of Diffraction for a Distorted Crystal, Http://Dx.Doi.Org/10.1143/JPSJ.26.1239 26, 1239 (2013).
[334] S. Takagi, Dynamical Theory of Diffraction Applicable to Crystals with Any Kind of Small Distortion, Acta Crystallogr 15, 1311 (1962).
[335] S. J. Chiu, Y. T. Liu, H. Y. Lee, G. P. Yu, and J. H. Huang, Strain Enhanced Ferroelectric Properties of Multiferroic BiFeO3/SrTiO3 Superlattice Structure Prepared by Radio Frequency Magnetron Sputtering, Thin Solid Films 539, 75 (2013).
[336] R. N. Kyutt, M. P. Shcheglov, V. Y. Davydov, and A. S. Usikov, Deformation of AlGaN/GaN Superlattice Layers According to X-Ray Diffraction Data, Physics of the Solid State 46, 364 (2004).
[337] Q. Yan, P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, M. Scheffler, and C. G. Van De Walle, Strain Effects and Band Parameters in MgO, ZnO, and CdO, Appl Phys Lett 101, 152105 (2012).
[338] M. Grundmann, Formation of Epitaxial Domains: Unified Theory and Survey of Experimental Results, Physica Status Solidi (b) 248, 805 (2011).
[339] P. A. Stampe, M. Bullock, W. P. Tucker, and R. J. Kennedy, Growthof MgO Thin Films on M-, A-, C-and R-Plane Sapphire by LaserAblation, J Phys D Appl Phys 32, 1778 (1999).
[340] J. M. Gallego, S. Kim, T. J. Moran, D. Lederman, and I. K. Schuller, Growth and Structural Characterization of Ni/Co Superlattices, Phys Rev B 51, 2550 (1995).
[341] J. W. Kos and M. Krawczyk, Two-Dimensional GaAs/AlGaAsSuperlattice Structures for Solar Cell Applications: Ultimate Efficiency Estimation, J Appl Phys 106, 93703 (2009).
[342] L. G. Ferreira, M. Marques, and L. K. Teles, Approximation to Density Functional Theory for the Calculation of Band Gaps of Semiconductors, Phys Rev B 78, 125116 (2008).
[343] S. Y. Ren, J. D. Dow, and G. L. Yang, Direct-Band-Gap Structure of Uniaxial-StressedSi x Ge 1 − x /Ge [111] Strained-Layer Superlattices, Phys Rev B 45, 6628 (1992).
[344] F. Capasso, Chapter 6 Graded-Gap and Superlattice Devices by Bandgap Engineering, Semiconductors and Semimetals 24, 319 (1987).
[345] I. Gorczyca, K. Skrobas, T. Suski, N. E. Christensen, and A. Svane, Influence of Strain and Internal Electric Fields on Band Gaps in Short Period Nitride Based Superlattices, Superlattices Microstruct 82, 438 (2015).
[347] T. S. Moss, The Interpretation of the Properties of Indium Antimonide, Proceedings of the Physical Society. Section B 67, 775 (1954).
[348] D. L. Smith and C. Mailhiot, Theory of Semiconductor Superlattice Electronic Structure, Rev Mod Phys 62, 173 (1990).
[349] M. Fox and R. Ispasoiu, Quantum Wells, Superlattices, and Band-Gap Engineering, Springer Handbooks 1 (2017).
[350] Y. H. Li, A. Walsh, S. Chen, W. J. Yin, J. H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S. H. Wei, Revised Ab Initio Natural Band Offsets of All Group IV, II-VI, and III-V Semiconductors, Appl Phys Lett 94, 1 (2009).
[351] C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr, M. Tchernycheva, F. H. Julien, W. G. Schmidt, K. Lischka, and D. J. As, Band Offsets in Cubic GaN/AlN Superlattices, Phys Rev B 83, 195301 (2011).
[352] R. Ferro and J. A. Rodríguez, Influence of F-Doping on the Transmittance and Electron Affinity of CdO Thin Films Suitable for Solar Cells Technology, Solar Energy Materials and Solar Cells 64, 363 (2000).
[353] K. Y. Tsou and E. B. Hensley, Electron Affinities of the Alkaline Earth Chalcogenides, J Appl Phys 45, 47 (1974).
[354] S.-H. Wei, Calculation of the Valence Band Offsets of Common-Anion Semiconductor Heterojunctions from Core Levels: The Role of Cation d Orbitals, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 5, 1239 (1987).
[355] S. H. Wei and A. Zunger, Calculated Natural Band Offsets of All II-VI and III-V Semiconductors: Chemical Trends and the Role of Cation d Orbitals, Appl Phys Lett 72, 2011 (1998).
[356] A. Franceschetti and A. Zunger, Pressure Dependence of Optical Transitions in Ordered GaP/InP Superlattices, Appl Phys Lett 65, 2990 (1994).
[357] A. D. Prins, B. Gil, D. J. Dunstan, and J. P. Faurie, CdTe/ZnTeStrained Layer Superlattices under High Pressure, High Press Res 3, 63 (1990).
[358] B. Rockwell, H. R. Chandrasekhar, M. Chandrasekhar, F. H. Pollak, H. Shen, L. L. Chang, W. I. Wang, and L. Esaki, Spectroscopic Studies of Strained-Layer GaSbAlSb Superlattices, Surf Sci 228, 322 (1990).
[359] A. D. Prins, J. L. Sly, and D. J. Dunstan, Determination of the Linear Pressure Coefficients of Semiconductor Bandgaps, Physica Status Solidi (b) 198, 57 (1996).
[360] S. H. Wei and A. Zunger, Predicted Band-Gap Pressure Coefficients of All Diamond and Zinc-Blende Semiconductors: Chemical Trends, Phys Rev B Condens Matter Mater Phys 60, 5404 (1999).
[361] W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, J. Wu, and E. E. Haller, Pressure Dependence of the Fundamental Band-Gap Energy of CdSe, Appl Phys Lett 84, 67 (2004).
[362] J. Zhao and N. L. Ross, Non-Hydrostatic Behavior of KBr as a Pressure Medium in Diamond Anvil Cells up to 5.63GPa, Journal of Physics: Condensed Matter 27, 185402 (2015).
[363] J. Huso, J. L. Morrison, H. Hoeck, X. B. Chen, L. Bergman, S. J. Jokela, M. D. McCluskey, and T. Zheleva, Pressure Response of the Ultraviolet Photoluminescence of ZnO and MgZnO Nanocrystallites, Appl Phys Lett 89, 171909 (2006).
[365] U. Schönberger and F. Aryasetiawan, Bulk and Surface Electronic Structures of MgO, Phys Rev B 52, 8788 (1995).
[366] J. Yu, M. Zhang, Z. Zhang, S. Wang, and Y. Wu, Hybrid-Functional Calculations of Electronic Structure and Phase Stability of MO (M = Zn, Cd, Be, Mg, Ca, Sr, Ba) and Related Ternary Alloy MxZn1−xO, RSC Adv 9, 8507 (2019).
[367] J. C. Boettger, First Principles Electronic Structure and Band Gap Pressure Coefficient for Cadmium-Oxide, Int J Quantum Chem 107, 2988 (2007).
[368] A. Gueddim, N. Bouarissa, and A. Villesuzanne, Energy Levels and Deformation Potentials for Rocksalt MgO, Optik - International Journal for Light and Electron Optics 124, 2670 (2013).
[369] R. L. Aggarwal and A. K. Ramdas, Physical Properties of Diamond and Sapphire(CRC Press, First Edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019., 2019).
[370] R. A. Graham, Linear Bulk Modulus Approximation for Sapphire, J Geophys Res 76, 4908 (1971).
[371] S. X. Li, J. Wu, E. E. Haller, W. Walukiewicz, W. Shan, H. Lu, and W. J. Schaff, Hydrostatic Pressure Dependence of the Fundamental Bandgap of InN and In-Rich Group III Nitride Alloys, Appl Phys Lett 83, 4963 (2003).
[372] F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences 30, 244 (1944).
[373] H. Baltache, R. Khenata, M. Sahnoun, M. Driz, B. Abbar, and B. Bouhafs, Full Potential Calculation of Structural, Electronic and Elastic Properties of Alkaline Earth Oxides MgO, CaO and SrO, Physica B Condens Matter 344, 334 (2004).
[374] M. Causà, R. Dovesi, C. Pisani, and C. Roetti, Electronic Structure and Stability of Different Crystal Phases of Magnesium Oxide, Phys Rev B 33, 1308 (1986).
[375] C. G. Van De Walle, Band Lineups and Deformation Potentials in the Model-Solid Theory, Phys Rev B 39, 1871 (1989).
[376] Y. H. Li, X. G. Gong, and S. H. Wei, Ab Initio All-Electron Calculation of Absolute Volume Deformation Potentials of IV-IV, III-V, and II-VI Semiconductors: The Chemical Trends, Phys Rev B Condens Matter Mater Phys 73, 245206 (2006).
[377] R. K. Gupta, K. Ghosh, R. Patel, and P. K. Kahol, Wide Band Gap Cd0.83Mg0.15Al0.02O Thin Films by Pulsed Laser Deposition, Appl Surf Sci 255, 4466 (2009).
[378] B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang, F. Wang, R. Deng, and X. Liu, Rare-Earth Doping in Nanostructured Inorganic Materials, Chem Rev 122, 5519 (2022).

Format:

pdf

Resource Identifier:

oai:rcin.org.pl:242171 ; IF PAN D-686

Source:

Biblioteka IF PAN, sygn. D-686

Language:

ang

Access:

Open

Object collections:

Last modified:

Oct 21, 2024

In our library since:

Aug 20, 2024

Number of object content downloads / hits:

10

All available object's versions:

https://rcin.org.pl./publication/278654

Show description in RDF format:

RDF

Show description in RDFa format:

RDFa

Show description in OAI-PMH format:

OAI-PMH

×

Citation

Citation style:

This page uses 'cookies'. More information