Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Geographia Polonica Vol. 96 No. 4 (2023)
Surface water temperature characteristics of the Vistula River mouth and the Gdańsk Bay were determined on the basis of available observations, remote sensing and hydrodynamic models. The water temperature in the Vistula River and the Gdańsk Bay was found to be much higher than the air temperature. In recent decades, the water temperature in the Vistula River mouth and the Gdańsk Bay has increased significantly. It has been determined that water temperature in the bay is affected not only by air temperature, but also by water discharge of the Vistula River and wind.
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., … & Winder, M. (2009). Lakes as sentinels of climate change. Limnology and oceanography, 54(6), 2283-2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Alcântara, E. H., Stech, J. L., Lorenzzetti, J. A., Bonnet, M. P., Casamitjana, X., Assireu, A. T., & de Moraes Novo, E. M. L. (2010). Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sensing of Environment, 114(11), 2651-2665. https://doi.org/10.1016/j.rse.2010.06.002
Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sensing, 6(11), 11607-11626. https://doi.org/10.3390/rs61111607
Chubarenko, B., & Margoński, P. (2008). The Vistula Lagoon. In Schiewer, U. (Eds.) Ecology of Baltic Coastal Waters. Ecological Studies, Vol. 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73524-3_8
Copernicus. (2022). The ever growing use of Copernicus across Europe's regions. A selection of 99 user stories by local and regional authorities. https://www.copernicus.eu/sites/default/files/2018-10/copernicus4regions.pdf
Czernecki, B., & Ptak, M. (2018). The impact of global warming on lake surface water temperature in Poland - the application of empirical-statistical downscaling, 1971-2100. Journal of Limnology. 77(2), 340-348. https://doi.org/10.4081/jlimnol.2018.1707
De Santis, D., Del Frate, F., & Schiavon, G. (2022). Analysis of climate change effects on surface temperature in Central-Italy lakes using satellite data time-series. Remote Sensing, 14(1). https://doi.org/10.3390/rs14010117
Dyba, K., Ermida, S., Ptak, M., Piekarczyk, J., & Sojka, M. (2022). Evaluation of methods for estimating lake surface water temperature using Landsat 8. Remote Sensing, 14(15): 3839. https://doi.org/10.3390/rs14153839
Girjatowicz, J. P. (2014). Characteristics and relationships of water temperature along Polish Baltic Sea coast. Inżynieria Morska i Geotechnika, 3, 195-201.
Graf, R., & Wrzesiński, D. (2020). Detecting patterns of changes in river water temperature in Poland. Water. 12(5). https://doi.org/10.3390/w12051327
IMGW-PIB. (2014). Ocena wpływu obecnych i przyszłych zmian klimatu na strefę polskiego wybrzeża i ekosystem Morza Bałtyckiego. Gdynia: Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy, Oddział Morski w Gdyni.
Kejna, M., & Rudzki, M. (2021). Spatial diversity of air temperature changes in Poland in 1961-2018. Theoretical and Applied Climatology, 143(3-4), 1361-1379. https://doi.org/10.1007/s00704-020-03487-8
Konik, M., Kowalewski, M., Bradtke, K., & Darecki, M. (2019). The operational method of filling information gaps in satellite imagery using numerical models. International Journal of Applied Earth Observation and Geoinformation, 75, 68-82. https://doi.org/10.1016/j.jag.2018.09.002
Kowalewska-Kalkowska, H., & Kowalewski, M. (2019). Combining satellite imagery and numerical modeling to study the occurrence of warm upwellings in the Southern Baltic Sea in winter. Remote Sensing, 11(24). https://doi.org/10.3390/rs11242982
Kubiak-Wójcicka, K. (2018). Flow characteristics of the Vistula river at the Tczew gauging station in 1951-2010 based on Flashiness Index. In 4rd International Conference Water Resources and Wetlands Conference proceedings (pp. 119-129). https://www.limnology.ro/wrw2018/Proceedings/16_Kubiak.pdf
Łajczak, A., Plit, J., Soja, R., Starkel, L., & Warowna, J. (2006). Changes of the Vistula River channel and floodplain in the last 200 Years. Geographia Polonica. 2, 65-87. http://rcin.org.pl/igipz/Content/81/GP_79_2.pdf#page=66
Lieberherr, G., & Wunderle, S. (2018). Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes. Remote Sensing, 10(7), 990. https://doi.org/10.3390/rs10070990
Marba, N., & Duarte, M. C. (2010). Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology, 16(8), 2366-2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x
Marszelewski, W., & Pius, B. (2016). Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal, 61(8), 1430-1442. https://doi.org/10.1080/02626667.2015.1040800
Mooij, W. M., De Senerpont Domis, L. N., & Hulsman, S. (2008). The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. Journal of Sea Research, 60(1-2), 32-43. https://doi.org/10.1016/j.seares.2008.03.002
Pareeth, S., Bresciani, M., Buzzi, F., Leoni, B., Lepori, F., Ludovisi, A., ... & Salmaso, N. (2017). Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data. Science of the Total Environment, 578, 417-426. https://doi.org/10.1016/j.scitotenv.2016.10.199
Ptak, M., Choiński, A., & Kirviel, J. (2016). Long-term water temperature fluctuations in coastal rivers (southern Baltic) in Poland. Bulletin of Geography. Physical Geography Series, No. 11. 35-42. https://doi.org/10.1515/bgeo-2016-0013
Ptak, M., Sojka, M., & Nowak, B. (2020). Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland - Lake Śniardwy. Journal of Hydrology and. Hydromechanics, 68(3), 260-270. https://doi.org/10.2478/johh-2020-0024
Ptak, M., Sojka, M., Graf, R., Choiński, A., Zhu, S., & Nowak, B. (2022). Warming Vistula River - the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. Journal of Hydrology and. Hydromechanics, 70(1), 1-11. https://doi.org/10.2478/johh-2021-0032
Schaeffer, B. A., Iiames, J., Dwyer, J., Urquhart, E., Salls, W., Rover, J., & Seegers, B. (2018). An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries. International Journal of Remote Sensing, 39(22), 7789-7805. https://doi.org/10.1080/01431161.2018.1471545
Sharaf, N., Fadel, A., Bresciani, M., Giardino, C., Lemaire, B. J., Slim, K., … & Vinçon-Leite, B. (2019). Lake surface temperature retrieval from Landsat-8 and retrospective analysis in Karaoun Reservoir, Lebanon. Journal of Applied Remote Sensing, 13(4). https://doi.org/10.1117/1.JRS.13.044505
Sharma, S., Gray, D. K., Read, J. S., O'Reilly, C. M., Schneider, P., Qudrat, A., … & Woo, K. H. (2015). A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009. Scientific Data, 2(1), 1-19. https://doi.org/10.1038/sdata.2015.8
Szaniawska, A. (2018). The Gulf of Gdańsk and Vistula Lagoon. In: Baltic Crustaceans. Springer, Cham. https://doi.org/10.1007/978-3-319-56354-1_4
Virdis, S. G. P., Soodcharoen, N., Lugliè, A., & Padedda, B. M. (2020). Estimation of satellite-derived lake water surface temperatures in the western Mediterranean: Integrating multi-source, multi-resolution imagery and a long-term field dataset using a time series approach. Science of The Total Environment, 707, 135567. https://doi.org/10.1016/j.scitotenv.2019.135567
Von Storch, H., Omstedt, A., Pawlak, J., & Reckermann, M. (2015). Introduction and Summary. In The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin (pp. 1-22). Springer, Cham, Heidelberg, New York, Dordrecht, London. https://doi.org/10.1007/978-3-319-16006-1_1
Vyshnevskyi, V., Matygin, A., & Komorin, V. (2023). Thermal regime of the Northwestern part of the Black Sea. Geographia Technica, 18(1), 29-38. https://doi.org/10.21163/GT_2023.181.03
Vyshnevskyi, V., & Shevchuk, S. (2021). Thermal regime of the Dnipro Reservoirs. Journal of Hydrology and Hydromechanics, 69(3), 300-310. https://doi.org/10.2478/johh-2021-0016
Vyshnevskyi, V., & Shevchuk, S. (2023). Thermal regime of the Danube Delta and the adjacent lakes. Journal of Hydrology and Hydromechanics, 71(3), 283-292. https://doi.org/10.2478/johh-2023-0015
Webb, B. W., & Nobilis, F. (2007). Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences Journal, 52(1), 74-85. https://doi.org/10.1623/hysj.52.1.74
Woolway, R. I., Dokulil, M. T., Marszelewski, W., Schmid, M., Bouffard, D., & Merchant, C. J. (2017). Warming of Central European lakes and their response to the 1980s climatic regime shift. Climate change, 142, 505-520. https://doi.org/10.1007/s10584-017-1966-4
Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., … & Zapadka, T. (2011). SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range. Oceanologia, 53(4), 897-924. https://doi.org/10.5697/oc.53-4.897
Wróblewski, R., Rudowski, S., Gajewski, Ł., Sitkiewicz, P., Szefler, K., Kałas, M., & Koszałka, J. (2015). Changes of the Vistula River External Delta in the period of 2009-2014. Bulletin of the Maritime Institute in Gdańsk. 30(1), 16-22.
Wrzesiński, D., & Graf, R. (2022). Temporal and spatial patterns of the river flow and water temperature relations in Poland. Journal of Hydrology and Hydromechanics, 70(1), 12-29. https://doi.org/10.2478/johh-2021-0033
Zblewski, S. (2007). O dwudzielności przyczyn zmian temperatury powierzchni Bałtyku (1982-2001). In K. Piotrowicz, R. Twardosz (Eds.), Wahania klimatu w różnych skalach przestrzennych i czasowych (pp. 145-154). Kraków: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego.
(pp. 145-154). Kraków: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego.Zhelezova, E., Krek, E., & Chubarenko, B. (2018). Characteristics of the polynya in the Vistula Lagoon ofthe Baltic Sea by remote sensing data. International Journal of Remote Sensing, 39(24), 9453-9462.https://doi.org/10.1080/01431161.2018.1524181
oai:rcin.org.pl:240187 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0264
CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure
Dec 17, 2024
Jan 12, 2024
276
https://rcin.org.pl./publication/276515
Edition name | Date |
---|---|
Graf R. : Thermal regime of the Vistula River mouth and the Gdańsk Bay | Dec 17, 2024 |
Krüger, Eduardo Gobo, João Tejas, Graziela De Souza, Reginaldo
Okoniewska, Monika
Demel, Kazimierz (1889–1978)
Korolec, Hanna
Stańczykowska, Anna
Kozłowska-Szczęsna, Teresa (1931– ) Limanówka, Danuta Niedźwiedź, Tadeusz (1942– ) Ustrnul, Zbigniew Paczos, Stanisław