Projekty RCIN i OZwRCIN

Obiekt

Tytuł: Offshore wind energy potential in Europe: a forecast of installed capacities and costs

Twórca:

Laskowicz, Tomasz : Autor Affiliation ORCID

Data wydania/powstania:

2022

Typ zasobu:

Tekst

Inny tytuł:

Europa XXI 42 (2022)

Wydawca:

IGiPZ PAN

Miejsce wydania:

Warszawa

Opis:

29 cm ; Każdy numer posiada własny tytuł.

Abstrakt:

Offshore wind installation targets of EU Member States were considered. The analysis of the national plans showed that EU target can be exceeded, provided the appropriate resources are committed: offshore space, capital and supply chain. Spatial plans were analyzed and the need for the number of installed turbines was determined. The capital needs to cover the costs of investment outlays were analyzed. A projection for the number of wind turbines installed in Europe up to 2030 was presented. The analysis identified how the resources committed to the targets will contribute to: the generation of electricity, the reduction in greenhouse gas emissions and contribution to improving Europe’s energy independence.

Bibliografia:

4C Offshore (14.02.2023). Global Offshore Wind Farm Database. Retrieved February 1, 2023, from https://www.4coffshore.com/windfarms/
Allan, G., Comerford, D., Connolly, K., McGregor, P., & Ross, A. G. (2020). The economic and environmental impacts of UK offshore wind development: The importance of local content. Energy, 199, 117436. https://doi.org/https://doi.org/10.1016/j.energy.2020.117436 DOI
Arrambide, I., Zubia, I., & Madariaga, A. (2019). Critical review of o ff shore wind turbine energy production and site potential assessment. Electric Power Systems Research, 167(October 2018), 39-47. https://doi.org/10.1016/j.epsr.2018.10.016 DOI
Bilgili, M., & Alphan, H. (2022). Global growth in offshore wind turbine technology. Clean Technologies and Environmental Policy, 24(7), 2215-2227. https://doi.org/10.1007/s10098-022-02314-0 DOI
Ćetković, S., & Buzogány, A. (2016). Varieties of capitalism and clean energy transitions in the European Union: When renewable energy hits different economic logics. Climate Policy, 16(5), 642-657. https://doi.org/10.1080/14693062.2015.1135778 DOI
Chen, J. L., Liu, H. H., Chuang, C. T., & Lu, H. J. (2015). The factors affecting stakeholders' acceptance of offshore wind farms along the western coast of Taiwan: Evidence from stakeholders' perceptions. Ocean and Coastal Management, 109(2015), 40-50. https://doi.org/10.1016/j.ocecoaman.2015.02.012 DOI
Ciołek, D., Matczak, M., Piwowarczyk, J., Rakowski, M., Szefler, K., & Zaucha, J. (2018). The perspective of Polish fishermen on maritime spatial planning. Ocean and Coastal Management, 166(June), 113-124. https://doi.org/10.1016/j.ocecoaman.2018.07.001 DOI
Díaz, H., & Guedes Soares, C. (2020). Review of the current status, technology and future trends of offshore wind farms. Ocean Engineering, 209(January), 107381. https://doi.org/10.1016/j.oceaneng.2020.107381 DOI
EC (2019). Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal. COM(2019) 640 final. European Commission.
EC (2020). Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. COM(2020) 741 final. European Commission.
EC (2022). Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions REPowerEU Plan. COM (2020) 230 final. European Commission.
EC (2023). Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions 'A Green Deal Industrial Plan for the Net-Zero Age'. COM(2023) 62 final. European Commission.
EC (2023). The European Maritime Spatial Planning Platform. Retrieved from www.maritime-spatial-planning.ec.europa.eu
ED (2022). The Esbjerg Declaration on The North Sea as a Green Power Plant of Europe. Retrieved from https://en.kefm.dk/Media/637884571703277400/The Esbjerg Declaration (002).pdf
EP (2008). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. European Parliament.
Esteban, M. D., Diez, J. J., López, J. S., & Negro, V. (2011). Why offshore wind energy? Renewable Energy, 36(2), 444-450. https://doi.org/10.1016/j.renene.2010.07.009 DOI
EU (2014). Directive 2014/89/EU of the European Parliment and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. Offical Journal of the European Union, 2014(April), 135-145.
EU BSG (2022). The Marienborg Declaration. EU Baltic Sea Governments. Retrieved from https://www.regeringen.dk/aktuelt/publikationer-og-aftaletekster/the-marienborg-declaration/
Eurostat (2023). Complete energy balances [NRG_BAL_C__custom_1970141]. Eurostat. Retrieved from https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C__custom_1970141/bookmark/table?lang=en&bookmarkId=d9edf51f-af56-42e2-a7f5-c8debed97494
Eurostat (2023). Gross and net production of electricity and derived heat by type of plant and operator. Eurostat. Retrieved from https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_peh/default/table?lang=en
Freeman, K., & Blanch, M. (2021). Innovation Impact on Levelised Cost of Energy Model. BVG Associates. Retrieved from https://bvgassociates.com/innovation-impact-on-levelised-cost-of-energy-model/
Freeman, K., Frost, C., Hundleby, G., Roberts, A., Valpy, B., Holttinen, H., Ramírez, L., & Pineda, I. (2019). Our Energy, Our Future. Wind Europe.
Gatzert, N., & Kosub, T. (2016). Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks. Renewable and Sustainable Energy Reviews, 60, 982-998. https://doi.org/10.1016/j.rser.2016.01.103 DOI
Gee, K., & Burkhard, B. (2012). Offshore wind farming on Germany's North Sea coast: Tracing regime shifts across scales. In T., Plieninger & C., Bieling (Eds.). Resilience and the Cultural Landscape: Understanding and Managing Change in Human-Shaped Environments (pp. 185-202). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139107778.014 DOI
Gilek, M., Armoskaite, A., Gee, K., Saunders, F., Tafon, R., & Zaucha, J. (2021). In search of social sustainability in marine spatial planning: A review of scientific literature published 2005-2020. Ocean and Coastal Management, 208(October 2020), 105618. https://doi.org/10.1016/j.ocecoaman.2021.105618 DOI
Glasson, J., Durning, B., & Welch, K. (2022). The Impacts of Offshore Wind Farms (OWFs) on Local Tourism and Recreation - Evolving Lessons from Practice. Journal of Energy and Power Technology, 4(4), 1-19. https://doi.org/10.21926/jept.2204037 DOI
Guillet, J. (2022). Financing offshore wind. World Forum Offshore Wind.
Haraldsson, M., Raoux, A., Riera, F., Hay, J., Dambacher, J. M., & Niquil, N. (2020). How to model social-ecological systems? - A case study on the effects of a future offshore wind farm on the local society and ecosystem, and whether social compensation matters. Marine Policy, 119, 104031. https://doi.org/10.1016/j.marpol.2020.104031 DOI
Higgins, P., & Foley, A. (2014). The evolution of offshore wind power in the United Kingdom. Renewable and Sustainable Energy Reviews, 37, 599-612. https://doi.org/10.1016/j.rser.2014.05.058 DOI
Hooper, T., Hattam, C., & Austen, M. (2017). Recreational use of offshore wind farms: Experiences and opinions of sea anglers in the UK. Marine Policy, 78, 55-60. https://doi.org/10.1016/j.marpol.2017.01.013 DOI
Hutchinson, M., & Zhao, F. (2023). Global Wind Report 2023. Global Wind Energy Council.
Ibrahim, O. S., Singlitico, A., Proskovics, R., McDonagh, S., Desmond, C., & Murphy, J. D. (2022). Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies. Renewable and Sustainable Energy Reviews, 160, 112310. https://doi.org/10.1016/j.rser.2022.112310 DOI
IEA (2020). Sustainable Recovery: World Energy Outlook Special Report. Paris: OECD Publishing. https://doi.org/10.1787/3f36f587-en DOI
Irawan, C. A., Akbari, N., Jones, D. F., & Menachof, D. (2018). A combined supply chain optimisation model for the installation phase of offshore wind projects. International Journal of Production Research, 56(3), 1189-1207. https://doi.org/10.1080/00207543.2017.1403661 DOI
Johansen, K., & Emborg, J. (2018). Wind farm acceptance for sale? Evidence from the Danish wind farm co-ownership scheme. Energy Policy, 117, 413-422. https://doi.org/10.1016/j.enpol.2018.01.038 DOI
Kaldellis, J. K., & Apostolou, D. (2017). Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart. Renewable Energy, 108, 72-84. https://doi.org/10.1016/j.renene.2017.02.039 DOI
Kuzemko, C., Blondeel, M., Dupont, C., & Brisbois, M. C. (2022). Russia's war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Research & Social Science, 93, 102842. https://doi.org/10.1016/J.ERSS.2022.102842 DOI
Lamy, J., Bruine de Bruin, W., Azevedo, I. M. L., & Morgan, M. G. (2020). Keep wind projects close? A case study of distance, culture, and cost in offshore and onshore wind energy siting. Energy Research and Social Science, 63, 101377. https://doi.org/10.1016/j.erss.2019.101377 DOI
Laskowicz, T. (2021). The perception of polish business stakeholders of the local economic impact of maritime spatial planning promoting the development of offshore wind energy. Sustainability, 13(12), 6755. https://doi.org/10.3390/su13126755 DOI
Lonergan, K., Gabrielli, P., & Sansavini, G. (2022). Energy justice analysis of the European Commission REPowerEU plan. Working Paper. https://doi.org/10.3929/ethz-b-000551952 DOI
López, M., Rodríguez, N., & Iglesias, G. (2020). Combined floating offshore wind and solar PV. Journal of Marine Science and Engineering, 8(8). https://doi.org/10.3390/JMSE8080576 DOI
Moore, C., Brown, S., MacDonald, P., Ewen, M., & Broadbent, H. (2022). European Electricity Review 2022. Ember. Retrieved from https://ember-climate.org/insights/research/european-electricity-review-2022/
Musial, W., Spitsen, P., Duffy, P., Beiter, P., Marquis, M., Hammond, R., & Shields, M. (2022). Offshore Wind Market Report: 2022 Edition. https://doi.org/10.2172/1883382 DOI
Nasab, N. M., Kilby, J., & Bakhtiaryfard, L. (2020). The potential for integration of wind and tidal power in New Zealand. Sustainability, 12(5), 1-21. https://doi.org/10.3390/su12051807 DOI
NSEC (2022). Joint Statement on the North Seas Energy Cooperation - 12 Sept 2022. Retrieved from https://energy.ec.europa.eu/system/files/2022-09/220912_NSEC_Joint_Statement_Dublin_Ministerial.pdf
Poulsen, T., & Lema, R. (2017). Is the supply chain ready for the green transformation? The case of off shore wind logistics. Renewable and Sustainable Energy Reviews, 73, 758-771. https://doi.org/10.1016/j.rser.2017.01.181 DOI
Przedrzymirska, J., Zaucha, J., Calado, H., Lukic, I., Bocci, M., Ramieri, E., Varona, M. C., Barbanti, A., Depellegrin, D., & Sousa, M. De. (2021). Multi-Use of the Sea as a Sustainable Development Instrument in Five EU Sea Basins. Sustainability, 13(15), 8159. https://doi.org/10.3390/su13158159 DOI
Püts, M., Kempf, A., Möllmann, C., & Taylor, M. (2023). Trade-offs between fisheries, offshore wind farms and marine protected areas in the southern North Sea - Winners, losers and effective spatial management. Marine Policy, 152, 105574. https://doi.org/10.1016/j.marpol.2023.105574 DOI
Ren, Z., Verma, A. S., Li, Y., Teuwen, J. J. E., & Jiang, Z. (2021). Offshore wind turbine operations and maintenance: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 144, 110886. https://doi.org/10.1016/j.rser.2021.110886 DOI
Rubio-Domingo, G., & Linares, P. (2021). The future investment costs of offshore wind: An estimation based on auction results. Renewable and Sustainable Energy Reviews, 148, 111324. https://doi.org/10.1016/j.rser.2021.111324 DOI
Schupp, M. F., Kafas, A., Buck, B. H., Krause, G., Onyango, V., Stelzenmüller, V., Davies, I., & Scott, B. E. (2021). Fishing within offshore wind farms in the North Sea: Stakeholder perspectives for multi-use from Scotland and Germany. Journal of Environmental Management, 279, 111762. https://doi.org/10.1016/j.jenvman.2020.111762 DOI
Shields, M., Beiter, P., Nunemaker, J., Cooperman, A., & Duffy, P. (2021a). Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind. Applied Energy, 298, 117189. https://doi.org/10.1016/j.apenergy.2021.117189 DOI
Shields, M., Marsh, R., Stefek, J., Oteri, F., Gould, R., Rouxel, N., Diaz, K., Molinero, J., Moser, A., Malvik, C., & Tirone, S. (2021b). The Demand for a Domestic Offshore Wind Energy Supply Chain. Technical Report. https://doi.org/10.2172/1860239 DOI
Sonnberger, M., & Ruddat, M. (2017). Local and socio-political acceptance of wind farms in Germany. Technology in Society, 51, 56-65. https://doi.org/10.1016/j.techsoc.2017.07.005 DOI
Sturm, C. (2022). Between a rock and a hard place: European energy policy and complexity in the wake of the Ukraine war. Journal of Industrial and Business Economics, 49(4), 835-878. https://doi.org/10.1007/s40812-022-00233-1 DOI
Szejgiec-Kolenda, B., Pardus, J., & Zaucha, J. (2018). Defining maritime space typology based on economic land-sea interaction. The case of the Polish Baltic Sea coast. Biuletyn Instytutu Morskiego, 33(1), 207-217. https://doi.org/10.5604/01.3001.0012.8173 DOI
UN (2015). The Paris Agreement. United Nations. https://doi.org/10.4324/9789276082569-2 DOI
van den Burg, S. W.K., Kamermans, P., Blanch, M., Pletsas, D., Poelman, M., Soma, K., & Dalton, G. (2017). Business case for mussel aquaculture in offshore wind farms in the North Sea. Marine Policy, 85, 1-7. https://doi.org/10.1016/j.marpol.2017.08.007 DOI
van den Burg, S. W.K., Röckmann, C., Banach, J. L., & van Hoof, L. (2020). Governing Risks of Multi-Use: Seaweed Aquaculture at Offshore Wind Farms. Frontiers in Marine Science, 7, 1-12. https://doi.org/10.3389/fmars.2020.00060 DOI
van der Loos, A., Langeveld, R., Hekkert, M., Negro, S., & Truffer, B. (2022). Developing local industries and global value chains: The case of offshore wind. Technological Forecasting and Social Change, 174, 121248. https://doi.org/10.1016/j.techfore.2021.121248 DOI
Victoria, M., Zhu, K., Brown, T., Andresen, G. B., & Greiner, M. (2020). Early decarbonisation of the European energy system pays off. Nature Communications, 11(1), 1-9. https://doi.org/10.1038/s41467-020-20015-4 DOI
Wee, H. M., Yang, W. H., Chou, C. W., & Padilan, M. V. (2012). Renewable energy supply chains, performance, application barriers, and strategies for further development. Renewable and Sustainable Energy Reviews, 16(8), 5451-5465. https://doi.org/10.1016/j.rser.2012.06.006 DOI
Weig, B., & Schultz-Zehden, A. (2019). Spatial Economic Benefit Analysis : Facing integration challenges in maritime spatial planning. Ocean and Coastal Management, 173, 65-76. https://doi.org/10.1016/j.ocecoaman.2019.02.012 DOI
Zaucha, J. (2018). Gospodarowanie przestrzenią morską. Warszawa: Wydawnictwo Akademickie Sedno.
Zaucha, J., & Pardus J. (2019). Editorial: Sea Dragons. Europa XXI, 36, 5-14. http://doi.org/10.7163/Eu21.2019.36.1 DOI
Zaucha, J., Pyć, D., Böhme, K., Neumann, L., & Aziewicz D. (2020). EU macro-regional strategies for the Baltic Sea Region after 2020. A nutshell of beauty and possibilities. Europa XXI, 38, 51-76. https://doi.org/10.7163/Eu21.2020.38.1 DOI
Zaucha, J., Matczak, M., Witkowska, J., Szczęch, A., Mytlewski, A., & Pardus, J. (2020b). Maritime spatial rent for modelling maritime spatial development. Studia Regionalne i Lokalne, 79(1), 5-29. https://doi.org/10.7366/1509499517901 DOI
Ziemba, P. (2022). Uncertain Multi-Criteria analysis of offshore wind farms projects investments - Case study of the Polish Economic Zone of the Baltic Sea. Applied Energy, 309, 118232. https://doi.org/10.1016/j.apenergy.2021.118232 DOI
Ziemba, P., Becker, A., & Becker, J. (2022). Models and Indices of Sustainability Assessment in the Energy Context. Energies, 15(24), 1-22. https://doi.org/10.3390/en15249465 DOI

Czasopismo/Seria/cykl:

Europa XXI

Tom:

42

Strona pocz.:

129

Strona końc.:

148

Szczegółowy typ zasobu:

Artykuł

Format:

application/octet-stream

Identyfikator zasobu:

oai:rcin.org.pl:239224 ; doi:10.7163/Eu21.2022.42.5 ; 1429-7132 (print) ; 2300-8547 (online) ; 10.7163/Eu21.2022.42.5

Źródło:

CBGiOŚ. IGiPZ PAN, sygn.: Cz.6406, Cz.6407 ; kliknij tutaj, żeby przejść

Język:

eng

Język streszczenia:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa 4.0

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R

Dostęp:

Otwarty

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji