• Search in all Repository
  • Literature and maps
  • Archeology
  • Mills database
  • Natural sciences

Search in Repository

How to search...

Advanced search

Search in Literature and maps

How to search...

Advanced search

Search in Archeology

How to search...

Advanced search

Search in Mills database

How to search...

Advanced search

Search in Natural sciences

How to search...

Advanced search

RCIN and OZwRCIN projects

Object

Title: Porównawcza ocena programów analizy żywotności populacji (PVA) w rankingu scenariuszy przekształceń krajobrazu = A comparative assessment of PVA software packages applied to rank the landscape management scenarios

Subtitle:

Przegląd Geograficzny T. 93 z. 3 (2021)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

Jednym z głównych narzędzi stosowanych przy podejmowaniu decyzji w ochronie przyrody jest analiza żywotności populacji (Population Viability Analysis, PVA). Dostępne programy PVA znacznie różnią się liczbą wymaganych szczegółowych danych demograficznych i siedliskowych oraz założeniami dotyczącymi dynamiki populacji. Dlatego przeprowadziliśmy analizę porównawczą różnych programów PVA opierającą się na rankingu scenariuszy zagospodarowania krajobrazu i ich wpływu na populacje ropuchy paskówki Bufo calamita w centralnej Polsce. Wykorzystaliśmy alternatywne scenariusze zagospodarowania doliny Wisły i programy reprezentujące różne podejścia do analizy żywotności populacji: modele siedliskowe i modele dynamiki metapopulacji (RAMAS GIS, VORTEX, META-X i LARCH). Rankingi scenariuszy, uzyskane w modelach siedliskowych na podstawie pojemności siedliska były jednakowe, różniły się jednak oceną struktury badanej metapopulacji paskówki. Analiza wyników wykazała różnice w wartościach różnych miar żywotności metapopulacji paskówki, potwierdzając, że absolutne wartości generowane przez pojedynczy model powinny być traktowane ze szczególną ostrożnością. Pomimo tych różnic, kolejność scenariuszy w rankingu była jednakowa we wszystkich modelach dynamiki metapopulacji i nie wykazywała wrażliwości na błędy wartości poszczególnych parametrów. Ocena wyników wszystkich modeli pozwala stwierdzić, iż ranking scenariuszy jest metodą wysoce skuteczną. Przyszli użytkownicy PVA powinni świadomie decydować o użyciu co najmniej dwóch programów, a wnioski oparte na wynikach więcej niż jednego modelu powinny mieć większą wartość przy podejmowaniu decyzji.

References:

Akçakaya, H.R. (2000). Viability Analyses with Habitat-Based Metapopulation Models. Population Ecology, 42(1), 45‑53. https://doi.org/10.1007/s101440050043 DOI
Akçakaya, H.R. (2005). RAMAS GIS: linking spatial data with population viability analysis Version 5 (Software manual). Setauket, New York: Appl. Biomath.
Akçakaya, H.R., McCarthy, M.A., & Pearce, J.L. (1995). Linking Landscape Data with Population Viability Analysis: Management Options for the Helmeted Honeyeater Lichenostomus Melanops Cassidix. Biological Conservation, 73(2), 169‑176. https://doi.org/10.1016/0006‑3207(95)90045‑4 DOI
Akçakaya, H.R., Radeloff, V.C., Mlandenoff, D. J., & He, H.S. (2004a). Integrating landscape and metapopulation modeling approaches: viability of the sharp-tailed grouse in a dynamic landscape. Conservation. Biology, 18, 526‑537. https://doi.org/10.1111/j.1523‑1739.2004.00520.x DOI
Akçakaya, H.R., Burgman, M.A., Kindvall, O., Wood, C.C., Sjögren-Gulve, P., Hatfield, J.S., & McCarthy, M.A. (2004b). Species conservation and management: case studies. New York: Oxford University Press.
Akçakaya, H.R., & Sjögren-Gulve, P. (2000). Population viability analyses in conservation planning: an overview. Ecological Bulletins, 48, 9‑21. https://doi.org/10.1016/j.baae.2004.03.001 DOI
Andrzejewski, R., (2003). Płazy i gady w KPN. Kampinoski Park Narodowy, tom 1, 617‑620.
Baguette, M. (2004). The Classical Metapopulation Theory and the Real, Natural World: A Critical Appraisal. Basic and Applied Ecology, 5(3), 213‑224. https://doi.org/doi: 10.1016/j.baae.2004.03.001 DOI
Beissinger, S., & McCullough, D. (red.). (2002). Population viability analysis. Chicago: University of Chicago Press.
Blicharski, M. (2002). Bogate stanowisko ropuchy paskówki Bufo calamita pod Warszawą. Kulon, 7(1‑2), 113‑115.
Boyce, M.S. (1992). Population viability analysis. Annual review of ecology, evolution, and systematics, 23, 481‑506. DOI
Brainerd, S., Kastdalen, L., & Seiler, A. (red.). (2007). Habitat modelling − a tool for managing landscape. Sunnerstra: Norwegian Institute for Nature Research.
Brans, J.P., & Vincke, Ph. (1985). A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Management Science, 31(6), 647‑656. https://doi.org/10.1287/mnsc.31.6.647 DOI
Brook, B.W., Burgman, M.A., Akcakaya, H.R., O'Grady, J.J., & Frankham, R. (2002). Critiques of PVA Ask the Wrong Questions: Throwing the Heuristic Baby out with the Numerical Bath Water. Conservation Biology, 16(1), 262‑263. https://doi.org/10.1046/j.1523‑1739.2002.01426.x DOI
Brook, B.W., Cannon, J.R., Lacy, R.C., Mirande, C., & Frankham, R. (1999). Comparison of the Population Viability Analysis Packages GAPPS, INMAT, RAMAS and VORTEX for the Whooping Crane (Grus americana). Animal Conservation, 2(1), 23‑31. https://doi.org/10.1111/j.1469‑1795.1999.tb00045.x DOI
Brook, B.W., O'Grady, J.J., Chapman, A.P., Burgman, M.A., Akcakaya, H.R., & Frankham, R. (2000). Predictive Accuracy of Population Viability Analysis in Conservation Biology. Nature, 404(6776), 385‑387. https://doi.org/10.1038/35006050 DOI
Bruinderink, G.G., van der Sluis, T., Lammertsma, D., Opdam, P., & Pouwels, R. (2003). Designing a coherent ecological network for large mammals in northwestern Europe. Conservation Biology, 17, 549‑557. https://doi.org/10.1046/j.1523‑1739.2003.01137.x DOI
Burgman, M.A., Ferson, S., & Akçakaya, H.R. (1993). Risk assessment in conservation biology. London: Chapman & Hall.
Cabeza, M. (2003). Habitat loss and connectivity of reserve networks in probability approaches to reserve design. Ecology Letters, 6, 665‑672. https://doi.org/10.1046/j.1461‑0248.2003.00475.x DOI
Chardon, J.P., Foppen, R.P.B., & Geilen, N. (2000). LARCH-RIVER: A Method to Assess the Functioning of Rivers as Ecological Networks. European Water Management, 3(6), 35‑43.
Clark, T.W., Backhouse, G.N., & Lacy, R.C. (1991). Report of a workshop on population viability assessment as a tool for the threatened species management and conservation. Australian Zoologist, 27, 28‑35. https://doi.org/10.7882/az.1991.004 DOI
Cushman, S. (2006). Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biological Conservation, 128(2), 231‑240. https://doi.org/10.1016/j.biocon.2005.09.031 DOI
Dobson, A.P., Bradshaw, A.D., & Baker, A.J.M. (1997). Hopes for the future: restoration ecology DOI
Drechsler, M., Frank, K., Hanski, I., O'Hara, R.B., & Wissel, C. (2003). Ranking Metapopulation Extinction Risk: From Patterns in Data to Conservation Management Decisions. Ecological Appl DOI
Elith, J., & Leathwick, J.R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 40, 677‑697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 DOI
Ellner, S.P., Fieberg, J., Ludwig, D., & Wilcox, C. (2002). Precision of Population Viability Analysis. Conservation Biology, 16(1), 258‑261. https://doi.org/10.1046/j.1523‑1739.2002.00553.x DOI
Elżanowski, A., Ciesiołkiewicz, J., Kaczor, M., Radwańska, J., & Urban, R., (2008). Amphibian road mortality in Europe: a meta-analysis with new data from Poland. European Journal of Wildlife Research, 55(1), 33‑43. https://doi.org/10.1007/s10344‑008‑0211-x DOI
Frank, K., Lorek, H., Sonnenschein, M., Wissel, C., & Grimm, V. (2003). META-X - Software for Metapopulation Viability Analysis. Berlin: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978‑3-642‑55723‑1 DOI
Franz, K.W. (2011). Metapopulation viability analysis of the Natterjack Toad (Bufo calamita): a comparative assessment of PVA software packages and management scenarios. Rozprawa doktorska. Uniwersytet Warszawski.
Franz, K.W., Romanowski, J., & Grimm, V. (2011). Modele siedliskowe i analiza żywotności populacji. Wiadomości Ekologiczne, 57, 97‑108.
Franz, K.W., Romanowski, J., Johst, K., & Grimm, V. (2013). Ranking Landscape Development Scenarios Affecting Natterjack Toad (Bufo Calamita) Population Dynamics in Central Poland. PLoS ONE, 8(5), e64852. https://doi.org/10.1371/journal.pone.0064852 DOI
Fulton, E.A., Boschetti, F., Sporcic, M., Jones, T., Little, L.R., Dambacher, J.M., Gray, R., Scott, R., &Gorton, R. (2015). A Multi-Model Approach to Engaging Stakeholder and Modellers in Complex Environmental Problems. Environmental Science & Policy, 48, 44‑56. https://doi.org/10.1016/j.envsci.2014.12.006 DOI
Grimm, V., & Wissel, C. (2004). The Intrinsic Mean Time to Extinction: A Unifying Approach to Analysing Persistence and Viability of Populations. Oikos, 105(3), 501‑511. https://doi.org/10.1111/j.0030‑1299.2004.12606.x DOI
Hanski, I. (1994). A Practical Model of Metapopulation Dynamics. Journal of Animal Ecology, 63(1), 151‑162. https://doi.org/10.2307/5591 DOI
Harris, R.B., Metzgar, L.H., & Bevins, C.D. (1986). GAPPS - Generalized Animal Population Projection System - User's Manual. Missoula, MT: Montana Cooperative Wildlife Research Unit Publ.
Hijmans, R.J., & Graham, C.H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global change biology, 12(12), 2272‑2281. https://doi.org/10.1111/j.1365‑2486.2006.01256.x DOI
Hokit, D.G., Stith, B.M., & Branch, L.C. (2001). Comparison of Two Types of Metapopulation Models in Real and Artificial Landscapes. Conservation Biology, 15(4), 1102‑1113. https://doi.org/10.1046/j.1523‑1739.2001.0150041102.x DOI
Kindvall, O. (2000). Comparative Precision of Three Spatially Realistic Simulation Models of Metapopulation Dynamics. Ecological Bulletins, 48, 101‑110. DOI
Lacy, R.C. (1993). VORTEX: A Computer Simulation Model for Population Viability Analysis. Wildlife Research, 20, 45‑65. https://doi.org/10.1071/WR9930045 DOI
Lindenmayer, D.B., Burgman, M.A., Akcakaya, H.R., Lacy, R.C., & Possingham, H.P. (1995). A Review of the Generic Computer-Programs Alex, Ramas/Space and Vortex for Modeling the Viability of Wildlife Metapopulations. Ecological Modelling, 82(2), 161‑174. https://doi.org/10.1016/0304‑3800(94)00085-V DOI
Lindenmayer, D.B., Clark, T.W., Lacy, R.C., & Thomas, V.C. (1993). Population viability analysis as a tool in wildlife conservation policy: with reference to Australia. Environmental Management, 17(6), 745‑758. https://doi.org/10.1007/BF02393895 DOI
Lindenmayer, D.B., Possingham, H.P., Lacy, R.C., McCarthy, M.A., & Pope, M.L. (2003). How Accurate Are Population Models? Lessons from Landscape-Scale Tests in a Fragmented System. Ecology Letters, 6(1), 41‑47. https://doi.org/10.1046/j.1461‑0248.2003.00391.x DOI
Mace, G.M., & Lande, R. (1991). Assessing extinction threats: towards a re-evaluation of IUCN threatened species categories. Conservation Biology, 5, 148‑157. https://doi.org/10.1111/J.1523‑1739.1991.TB00119.X DOI
McCarthy, M.A., Andelman, S.J., & Possingham, H.P. (2003). Reliability of relative predictions in population viability analysis. Conservation Biology, 17, 982‑989. https://doi.org/10.1046/j.1523‑1739.2003.01570.x DOI
McCarthy, M.A., & Thompson, C. (2001). Expected Minimum Population Size as a Measure of Threat. Animal Conservation, 4(4), 351‑355. https://doi.org/10.1017/S136794300100141X DOI
Mills, L.S., Hayes, S.G., Baldwin, C., Wisdom, M.J., Citta, J., Mattson, D.J., & Murphy, K. (1996). Factors Leading to Different Viability Predictions for a Grizzly Bear Data Set. Conservation Biology, 10(3), 863‑873. https://doi.org/10.1046/j.1523‑1739.1996.10030863.x DOI
Mills, L.S., & Smouse, P.E. (1994). Demographic Consequences of Inbreeding in Remnant Populations. The American Naturalist, 144(3), 412‑431. https://doi.org/10.1086/285684 DOI
Murphy, J.M., Sexton, D.M., Barnett, D.N., Jones, G.S., Webb, M.J., Collins, M., & Stainforth, D.A. (2004). Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430(7001), 768‑772. https://doi.org/10.1038/nature02771 DOI
O'Grady, J.J., Reed, D.H., Brook, B.W., & Frankham, R. (2004). What Are the Best Correlates of Predicted Extinction Risk? Biological Conservation, 118(4), 513‑520. https://doi.org/10.1016/j.biocon.2003.10.002 DOI
Opdam, P., Verboom, J., & Pouwels, R. (2003). Landscape cohesion: an index for the conservation potential of landscapes for biodiversity. Landscape Ecology, 18, 113‑126. https://doi.org/10.1023/A: 1024429715253 DOI
Pe'er, G., Matsinos, Y., Johst, K., Franz, K.W., Turlure, C., Radchuk, V., Malinowska, A., Curtis, J.M.R., Naujokaitis-Lewis, I., Wintle, B.A., & Henle, K. (2013). A Protocol for Better Design, Application, and Communication of Population Viability Analyses. Conservation Biology, 27, 644‑656. https://doi.org/10.1111/cobi.12076 DOI
Pellet, J., Maze, G., & Perrin, N. (2006). The Contribution of Patch Topology and Demographic Parameters to Population Viability Analysis Predictions: The Case of the European Tree Frog. Population Ecology, 48(4), 353‑361. https://doi.org/10.1007/s10144‑006‑0003‑7 DOI
Possingham, H.P., & Davies, I. (1995). ALEX: A Model for the Viability Analysis of Spatially Structured Populations. Biological Conservation, 73(2), 143‑150. https://doi.org/10.1016/0006‑3207(95)90039-X DOI
Radchuk, V., Johst, K., Groeneveld, J., Turlure, C., Grimm, V., & Schtickzelle, N. (2014). Appropriate Resolution in Time and Model Structure for Population Viability Analysis: Insights from a Butterfly Metapopulation. Biological Conservation, 169, 345‑354. https://doi.org/10.1016/j.biocon.2013.12.004 DOI
Rannap, R., Lõhmus, A. & Jakobson, K. (2007). Consequences of coastal meadow degradation: The case of the natterjack toad (Bufo Calamita) in Estonia. Wetlands, 27, 390. DOI
Reed, J.M., Mills, L.S., Dunning, J.B., Menges, E.S., Mckelvey, K.S., Frye, R., Beissinger, S.R., Anstett, M.C., & Miller, P. (2002). Emerging Issues in Population Viability Analysis. Conservation Biology, 16(1), 7‑19. https://doi.org/10.1046/j.1523‑1739.2002.99419.x DOI
Romanowski, J. (2007). Vistula River Valley as the Ecological Corridor for Mammals. Polish Journal of Ecology, 55(4), 805‑819.
Romanowski, J., Kowalczyk, K., & Rau, K. (2008). Population Viability Modelling and Potential Threats to the Beaver in the Vistula River Valley, Poland. Annales Zoologici Fennici 45(4), 323‑328. https://doi.org/10.5735/086.045.0413 DOI
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E. et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770‑1774. https://doi.org/10.1126/science.287.5459.1770 DOI
Shea, K., Runge, M.C., Pannell, D., Probert, W. J., Li, S.L., Tildesley, M., & Ferrari, M. (2020). Harnessing multiple models for outbreak management. Science, 368(6491), 577‑579. https://doi.org/10.1126/science.abb9934 DOI
Sjögren-Gulve, P., & Hanski, I. (2000). Metapopulation Viability Analysis Using Occupancy Models. Ecological Bulletins, 48, 53‑71. https://doi.org/10.2307/20113248 DOI
Van der Sluis, T., Romanowski, J., Bouwma, I.M., & Matuszkiewicz, J. (2007). Comparison of Scenarios for the Vistula River, Poland. W: S.-K. Hong, N. Nakagoshi, B. Fu, & Y. Morimoto (red.), Landscape Ecological Applications in Man-Influenced Areas Linking Man and Nature Systems (s. 417‑433). Dordrecht, The Netherlands: Springer. DOI
Zurell, D., Jeltsch, F., Dormann, C.F., & Schroder, B. (2009). Static Species Distribution Models in Dynamically Changing Systems: How Good Can Predictions Really Be? Ecography, 32(5), 733‑744. https://doi.org/10.1111/j.1600‑0587.2009.05810.x DOI

Relation:

Przegląd Geograficzny

Volume:

93

Issue:

3

Start page:

365

End page:

385

Detailed Resource Type:

Artykuł

Format:

application/octet-stream

Resource Identifier:

oai:rcin.org.pl:231904 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2021.3.3

Source:

CBGiOŚ. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Licencja Creative Commons Uznanie autorstwa 4.0

Terms of use:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitizing institution:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Original in:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Projects co-financed by:

Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R ; Unia Europejska. Europejski Fundusz Rozwoju Regionalnego

Access:

Otwarty

×

Citation

Citation style:

This page uses 'cookies'. More information