Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Geographia Polonica Vol. 94 No. 2 (2021)
The aim of this research was to illustrate the relationship between the occurrence of very strong and extreme cold stress among human beings under the Universal Thermal Climate Index (UTCI) across Poland and largescale near-surface air temperature over the central part of Europe. The statistical downscaling procedure of canonical correlation analysis (CCA) with respect to the period between 1971 and 2000 was applied to extract the main modes of large-scale factors and their local responses. The greatest frequency of occurrence of the discussed cold stress exceeded 35% in January. Most of the variance (39-44%) of the local field in each winter month is explained by the first coupled canonical maps. T he main patterns of large-scale field show negative anomalies of monthly mean air temperature in central Europe from -1°C up to -3°C. It can indicate an increase in frequency of the occurrence of analysed cold stress categories throughout the entire area of Poland, by 2% to even over 10%, depending on the region. The best quality model was obtained in eastern Poland, especially in the north-east and south-west of Poland.
Barne tt, T.P., Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115, 1825-1850. https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2
Bartoszek, K., Wereski, S., Krzyżewska, A., Dobek, M. (2017). The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bulletin of Geography, Physical Geography Series, 12, 41-49. https://doi.org/10.1515/bgeo-2017-0004
Benestad, R.E. (2002). Empirically downscaled temperature scenarios for northern Europe. Climate Research, 21, 105-125. https://doi.org/10.3354/cr021105
Błażejczyk, K. (2005). MENEX_2005 − the updated version of man - environment heat exchange model. https://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/indywidualne/blazejczyk/MENEX_2005.pdf [1 February 2021]
Błażejczyk, K., Baranowski, J., Błażejczyk, A. (2015). Wpływ klimatu na stan zdrowia w Polsce: stan aktualny oraz prognoza do 2100 roku. Warsaw: Wydawnictwo Akademickie SEDNO.
Błażejczyk, K., Baranowski, J., Jendritzky, G., Błażejczyk, A., Bröde, P., Fiala, D. (2015). Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geographia Polonica, 88(3), 439-453. https://doi.org/10.7163/GPol.0027
Błażejczyk, K., Bröde, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B., Kunert, A. (2010). Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14, 91-102. https://doi.org/10.2478/mgrsd-2010-0009
Błażejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515-535. https://doi.org/10.1007/s00484-011-0453-2
Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., Kampmann, B. (2013). An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86(1), 5-10. https://doi.org/10.7163/GPol.2013.1
Błażejczyk, K., Kuchcik, M., Dudek, W., Kręcisz, B., Błażejczyk, A., Milewski, P., Szmyd, J., Pałczyński, C. (2016). Urban heat island and bioclimatic comfort in Warsaw. In F. Musco (Ed.) Counteracting urban heat island effects in a global climate change scenario. Springer International Publishing. https://doi.org/10.1007/978-3-319-10425-6_11
Błażejczyk, K., Kunert, A. (2011). Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce. Monografie, 13, Warsaw: IGiPZ PAN.
Błażejczyk, K., Nejedlik, P., Skrynyk, O., Halaś, A., Błażejczyk, A., Mikulova, K. (2020). Influence of geographical factors on thermal stress in northern Carpathians. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-02011-x
Błażejczyk, M., Błażejczyk, K. (2006). Bioklima ver. 2.6. Software (2010). https://www.igipz.pan.pl/Bioklima-zgik.html [1 February 2021]
Bröde, P., Fiala, D., Błażejczyk, K., Holmer, I., Jendritzky, G., Kampmann, B., Tinz, B., Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 56(3), 481-449. https://doi.org/10.1007/s00484-011-0454-1
Bröde, P., Krüger, E.L., Fiala, D. (2013). UTCI: validation and practical application to the assessment of urban outdoor thermal comfort. Geographia Polonica, 86(1), 11-20. https://doi.org/10.7163/GPol.2013.2
Bryś, K., Ojrzyńska, H. (2016). Bodźcowość warunków biometeorologicznych we Wrocławiu (Stimulating qualities of biometeorological conditions in Wrocław). Acta Geographica Lodziensia, 104, 193-200.
Busuioc, A., Tomozeiu, R., Cacciamani, C. (2008). Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. International Journal of Climatology, 28, 449-464. https://doi.org/10.1002/joc.1547
Cattiaux, J., Vautard, R., Cassou, C., You, P., Masson-Delmotte, V., Codron, F. (2010). Winter 2010 in Europe: A cold extreme in a warming climate. Geophysical Research Letters, 37, L20704. https://doi.org/10.1029/2010GL044613
Chen, YC., Matzarakis, A. (2018). Modified physiologically equivalent temperature-basics and applications for western European climate. Theoretical and Applied Climatology, 132, 1275-1289. https://doi.org/10.1007/s00704-017-2158-x
Di Napoli, C., Pappenberger, F., Cloke, H.L. (2018). Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 62(7), 1155-1165. https://doi.org/10.1007/s00484-018-1518-2
Domonokos, P., Kysely, J., Piotrowicz, K., Petrovic, P., Likso, T. (2003). Variability of extreme temperature events in southcentral Europe during the 20th century and its relationship with large-scale circulation. International Journal of Climatology, 23, 987-1010. https://doi.org/10.1002/joc.929
Fiala, D., Havenith, G., Bröde, P., Kampmann, B., Jendritzky, G. (2012). UTCI Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56, 429-441. https://doi.org/10.1007/s00484-011-0424-7
Fröhlich, D., Matzarakis, A. (2020). Calculating human thermal comfort and thermal stress in the PALM model system 6.0. Geoscientific Model Development, 13, 3055-3065.
Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M.L., Guo, Y.L.L., Wu, Ch., Kan, H., Yi, S-M., de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P.H.N.,… Armstrong, B. (2015). Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 386, 369-375. https://doi.org/10.1016/S0140-6736(14)62114-0
Ge, Q., Kong, Q., Xi, J., Zheng, J. (2017). Application of UTCI in China from tourism perspective. Theoretical and Applied Climatology, 128, 551-561. https://doi.org/10.1007/s00704-016-1731-z
Geletič, J., Lehnert, M., Krč, P., Resler, J., Krayenhoff, E.S. (2021). High-resolution modelling of thermal exposure during a hot spell: A case study using PALM-4U in Prague, Czech Republic. Atmosphere, 12(2), 175. https://doi.org/10.3390/atmos12020175
Głogowski, A., Bryś, K., Perona, P. (2020). Bioclimatic conditions of the Lower Silesia region (South-West Poland) from 1966 to 2017. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01970-5
Holmér, I. (1988). Assessment of cold stress in terms of required clothing insulation - IREQ. International Journal of Industrial Ergonomics, 3(2),159-166. https://doi.org/10.1016/0169-8141(88)90017-0
Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI - why another thermal index? International Journal of Biometeorology, 56(3), 421-428. https://doi.org/10.1007/ s00484-011-0513-7
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woolen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorology Society, 77, 437-470. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Keatinge, W.R. (2002). Winter mortality and its causes. International Journal of Circumpolar Health, 61(4), 292-299. https://doi.org/10.3402/ijch.v61i4.17477
Kolendowicz, L., Półrolniczak, M., Szyga-Pluta, K., Bednorz, E. (2018). Human biometeorological conditions in the southern Baltic coast based on the Universal Thermal Climate Index (UTCI). Theoretical and Applied Climatology, 134, 363-379. https://doi.org/10.1007/s00704-017-2279-2
Krüger, E.L., Vieira Silva, T.J., da Silveira Hirashima, S.Q., Grala da Cunha, E., Alcântara, R.L. (2020). Calibrating UTCI'S comfort assessment scale for three Brazilian cities with different climatic conditions. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01897-x
Krzyżewska, A., Wereski, S., Dobek, M. (2020). Summer UTCI variability in Poland in the twenty-first century. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01965-2
Kuchcik, M. (2017). Warunki termiczne w Polsce na przełomie XX I XXI wieku i ich wpływ na umieralność. Prace Geograficzne, 263, Warsaw: IGiPZ PAN.
Kuchcik, M. (2020). Mortality and thermal environment (UTCI) in Poland - long-term, multi-city study. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications https://doi.org/10.1007/s00484-020-01995-w
Kuchcik, M., Błażejczyk, K., Halaś, A. (2021). Long-term changes in hazardous heat and cold stress in humans: multi-city study in Poland. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-02069-7
Kyselý, J. (2008). Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Global and Planetary Change, 62, 147-163. https://doi.org/10.1016/j.gloplacha.2008.01.003
Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21(1), 91-103. doi:10.3354/cr021091Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21(1), 91-103. doi:10.3354/cr021091
Lehnert, M., Tokar, V., Jurek, M., Geletič, J. (2020). Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology. https://doi.org/10.1007/s00484-020-02010-y
Lhotka, O., Kyselý, J. (2015). Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology, 35(7),1232-1244. https://doi.org/10.1002/joc.4050
Maak, K., von Storch, H. (1997). Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany International Journal of Biometeorology, 41, 5-12. https://doi.org/10.1007/s004840050046
Matulla, C., Scheifinger, H., Menzel, A., Koch, E. (2003). Exploring two methods for statistical downscaling of Central European phenological time series. International Journal of Biometeorology, 48(2), 56-64. https://doi.org/10.1007/s00484-003-0186-y
Matzarakis, A., Mayer, H., Iziomon, M.G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43, 76-84. https://doi.org/10.1007/s004840050119
Matzarakis, A., Muthers, S., Rutz, F. (2014). Application and comparison of UTCI and PET in temperate climate conditions. Finisterra, 49(98), 21-31. http://dx.doi.org/10.18055/Finis6453
Matzarakis, A., Rutz, F., Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, 54, 131-139. https://doi.org/10.1007/s00484-009-0261-0
Milewski, P. (2013). Application of the UTCI to the local bioclimate of Poland's Ziemia Kłodzka region. Geographia Polonica, 86, 47-54. https://doi.org/10.7163/GPol.2013.6
Novak, M. (2013). Use of the UTCI in the Czech Republic. Geographia Polonica, 86, 21-28. https://doi.org/10.7163/GPol.2013.3
Nowosad, M., Rodzik, B., Wereski, S., Dobek, M. (2013). The UTCI index in Lesko and Lublin and its circulation determinants. Geographia Polonica, 86, 29-36. https://doi.org/10.7163/GPol.2013.4
Okoniewska, M. (2020). Daily and seasonal variabilities of thermal stress (based on the UTCI) in air masses typical for Central Europe: an example from Warsaw. International Journal of Biometeorology, Special issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01997-8
Owczarek, M., Fi lipiak, J. (2016). Contemporary changes of thermal conditions in Poland, 1951-2015. Bulletin of Geography. Physical Geography Series, 10, 31-50. https://doi.org/10.1515/bgeo-2016-0003
Owczarek, M. (2019). The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theoretical and Applied Climatology, 137(1-2), 855-869. https://doi.org/10.1007/s00704-018-2633-z
Petralli, M., Massetti, L., Pearlmutter, D., Brandani, G., Messeri, A., Orlandini, S. (2020). UTCI field measurements in an urban park in Florence (Italy). Miscellanea Geographica, 24(3), 111-117. https://doi.org/10.2478/mgrsd-2020-0017
Pfahl, S. (2014). Characterising the relationship between weather extremes in Europe and synoptic circulation features. Natural Hazards and Earth System Sciences, 14, 1461-1475. https://doi.org/10.5194/nhess-14-1461-2014
Plavcová, E., Kyselý, J. (2016). Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Climate Dynamics, 46(9-10), 2805-2820. https://doi.org/10.1007/s00382-015-2733-8
Porębska, M., Zdunek, M. (2013). Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001-2011. Meteorolologische Zeitschrift, 22(5), 533-540. https://doi.org/10.1127/0941-2948/2013/0455
Półrolniczak, M., Szyga-Pluta, K., Kolendowicz, L. (2016). Bioklimat wybranych miast pasa Pobrzeży Południowobałtyckich na podstawie uniwersalnego wskaźnika obciążenia cieplnego. Acta Geographica Lodziensia, 104, 147-161.
Provençal, S., Bergeron, O., Leduc, R., Barrette, N. (2016). Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. International Journal of Biometeorology, 60(4), 591-603. https://doi.org/10.1007/s00484-015-1054-2
Santos, J., Corte-Real, J., Ulbrich, U., Palutikof, J. (2007). European winter precipitation extremes and large-scale circulation: A coupled model and its scenarios. Theoretical and Applied Climatology, 87, 85-102. https://doi.org/10.1007/s00704-005-0224-2
Santos, J.A., Malheiro, A.C., Pinto, J.G., Jones, G.V. (2012). Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Climate Research, 51, 89-103. https://doi.org/10.3354/cr01056
Staiger, H., Laschewski, G., Matzarakis, A. (2019). Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere,10(1), 18. https://doi.org/10.3390/atmos10010018
Tomczyk, A.M., Bednorz, E., Półrolniczak, M., Kolendowicz, L. (2019). Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology, 137(3-4), 1909-1923. https://doi.org/10.1007/s00704-018-2715-y
Tomczyk, A.M., Bednorz, E., Sulikowska, A. (2019). Cold spells in Poland and Germany and their circulation conditions. International Journal of Climatology, 39, 4002-4014. https://doi.org/10.1002/joc.6054
Tomczyk, A.M., Bednorz, E., Szyga-Pluta, K. (2021). Changes in air temperature and snow cover in winter in Poland. Atmosphere, 12(1), 68. https://doi.org/10.3390/atmos12010068
Tomczyk, A.M., Owczarek, M. (2020). Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology, 139(3-4), 893-905. https://doi.org/10.1007/s00704-019-02998-3
Tomozeiu, R., Pasqui, M., Quaresima, S. (2018). Future changes of air temperature over Italian agricultural areas: a statistical downscaling technique applied to 2021-2050 and 2071-2100 periods. Meteorology and Atmospheric Physics, 130, 543-563. https://doi.org/10.1007/s00703-017-0536-7
Urban, A., Kyselý, J. (2014). Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research and Public Health, 11, 952-967. https://doi.org/10.3390/ijerph110100952
Ustrnul, Z., Czekierda, D., Wypych, A. (2010). Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Physics and Chemistry of the Earth, 35, 429-436. https://doi.org/10.1016/j.pce.2009.12.012
Vinogradova, V. (2020). Using the Universal Thermal Climate Index (UTCI) for the assessment of bioclimatic conditions in Russia. International Journal of Biometeorology, Special issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01901-4
von Storch, H., Zwiers, F.W. (1999). Statistical analysis in climate research. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511612336
Wereski, S., Krzyżewska, A., Dobek, M. (2020). Winter UTCI variability in Poland in the 21st century. Miscellanea Geographica, 24(3), 128-137. https://doi.org/10.2478/mgrsd-2020-0021
Werner, P.C., von Storch, H. (1993). Interannual variability of Central European mean temperature in January-February and its relation to large-scale circulation. Climate Research, 3, 195-207.
Wibig, J. (2007). Fale ciepła i chłodu w Środkowej Polsce na przykładzie Łodzi. Acta Universitatis Lodziensis, Folia Geographica Physica, 8, 27-61. http://hdl.handle.net/11089/2852
Wibig, J., Podstawczyńska, A., Rzepa, M., Piotrowski, P. (2009). Cold waves in Poland - frequency, trends, and relationships with atmospheric circulation. Geographia Polonica, 82, 47-59.
Wilks, D.S. (2005). Statistical methods in the atmospheric sciences. International Geophysics Series. Burlington: Elsevier.
Wójcik, R., Miętus, M. (2012). Rola cyrkulacji atmosferycznej w kształtowaniu długookresowych zmian temperatury powietrza w Polsce. In Z. Bielec-Bąkowska, E. Łupikasza, A. Widawski (Eds.), Rola cyrkulacji atmosfery w kształtowaniu klimatu (pp. 385-397), Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego.
oai:rcin.org.pl:194931 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0204
CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Mar 28, 2022
Jun 30, 2021
551
https://rcin.org.pl./publication/229995
Pecelj, Milica Błażejczyk, Anna Vagić, Nemanja Ivanović, Peca
Błażejczyk, Krzysztof
Miszuk, Bartłomiej
Błażejczyk, Krzysztof Pecelj, Milica Nejedlik, Pavol Skrynyk, Olesya Mikulova, Katarina
Nowosad, Marek Rodzik, Beata Wereski, Sylwester Dobek, Mateusz
Milewski, Paweł
Owczarek, Małgorzata
Wieczorek, Joanna Błażejczyk, Krzysztof Morita, Takeshi