Advanced search
Advanced search
Advanced search
Advanced search
Advanced search
Przegląd Geograficzny T. 93 z. 1 (2021)
W badaniach przedstawiono tematykę występowania nocnych burz w Polsce, w tym próbę określenia korzystnych warunków synoptycznych i wskaźników termodynamicznych determinujących ich rozwój i aktywność. Burze jako gwałtowne zjawiska atmosferyczne wiążą się z szeregiem groźnych zjawisk, m.in. intensywnymi opadami deszczu, opadami gradu czy też silnymi porywami wiatru, jednak w opracowaniu jako wyznacznik aktywności burz przyjęto ich aktywność elektryczną. Opracowanie ma na celu określenie sytuacji synoptycznych sprzyjających burzom nocnym, wyodrębnienie dominujących struktur burzowych oraz poznanie najskuteczniejszych wskaźników konwekcji w prognozowaniu burz nocnych. Cel zrealizowano na podstawie analizy doziemnych wyładowań atmosferycznych występujących w Polsce w latach 2002‑2018, o których dane uzyskano z systemu PERUN. Parametry atmosfery i wskaźniki konwekcji opracowane zostały na podstawie reanalizy ERA5. Ponadto dla wyszczególnionych burz przeprowadzono analizę synoptyczną oraz dodatkowo została określona ich dominująca struktura. W opracowaniu przeanalizowanych zostało ponad 1,5 mln wyładowań doziemnych. Przeprowadzone badania wykazały, że głównymi sytuacjami synoptycznymi umożliwiającymi rozwój burz nocnych są przede wszystkim: front pofalowany, front chłodny, zbieżność wiatru dolnego – tj. sytuacje wyróżniające się na ogół dobrą organizacją konwekcji. Dodatkowym czynnikiem, który we wszystkich przypadkach wspomagał rozwój i aktywność burz nocnych, była obecność prądu strumieniowego w górnej troposferze.
Augustine, J.A., & Caracena, F. (1994). Lower-tropospheric precursors to nocturnal MCS development over the Central United States. Weather Forecasting, 9, 116‑135.
Bąkowski, R. (2005). Wybrane analityczne i prognostyczne wskaźniki chwiejności atmosfery. W: M. Ozga-Zielińska, & D. Limanówka (red.), Hydrologia, meteorologia i klimatologia: badania naukowe i prognozy w erze informatyzacji. Seria Monografie (s. 209‑218). Warszawa: IMGW.
Bąkowski, R., & Bielec-Bąkowska, Z. (2005). Wybrane przypadki wystąpienia groźnych zjawisk atmosferycznych w Polsce w ostatnich latach. W: E. Bogdanowicz, U. Kossowska-Cezak, & J. Szkutnicki (red.), Ekstremalne zjawiska hydrologiczne i meteorologiczne. Seria Monografie (s. 325‑335). Warszawa: IMGW.
Bielec-Bąkowska, Z. (2002). Zróżnicowanie przestrzenne i zmienność wieloletnia występowania burz w Polsce (1949‑1998). Katowice: Wydawnictwa Uniwersytetu Śląskiego.
Brooks, H.E., Lee, J.W., & Craven, J.P. (2003). The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmospheric Research, 67‑68, 73‑94. https://doi.org/10.1016/S0169‑8095 (03)00045‑0
Doswell, C.A., Brooks, H.E., & Maddox, R.A. (1996). Flash flood forecasting: an ingredients-based methodology, Weather and Forecasting, 11, 560‑581. https://doi.org/10.1175/1520‑0434 (1996)011<0560:FFFAIB>2.0.CO; 2
Gebauer, J.G., Shapiro, A., Fedorovich, E., & Klein, P. (2018). Convection initiation caused by heterogeneous low-level jets over the Great Plains. Monthly Weather Review, 146, 2615‑2637. https://doi.org/10.1175/MWR-D-18‑0002.1
Geerts, B., Parsons, D., Ziegler, C., Weckwerth, T., Biggerstaff, M., Clark, R., Coniglio, M., Demoz, B., Ferrare, R., Gallus, W., Haghi, K., Hanesiak, J., Klein, P., Knupp, K., Kosiba, K., McFarquhar, G., Moore, J., Nehrir, A., Parker, M., Pinto, J., Rauber, R., Schmuacher, R., Truner, D., Wang, Q., Wang, X., Wang, Z., & Wurman, J. (2017). The 2015 Plains Elevated Convection at Night Field Project. Bulletin of American Meteorological Society, 98(4), 767‑786. https://doi.org/10.1175/BAMS-D-15‑00257.1
Grabowska, K. (2011). Przebieg roczny i dobowy burz w klimacie umiarkowanym morskim, przejściowym i kontynentalnym (na przykładzie Londynu, Warszawy i Moskwy). Prace i Studia Geograficzne, 47, 463‑471.
Grasmick, C., Geerts, B., Turner, D.D., Wang, Z., & Weckwerth, T.M. (2018). The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: an observational study of the 15 July 2015 MCS in PECAN. Monthly Weather Review, 146, 3203‑3226. https://doi.org/10.1175/MWR-D-18‑0169.1
Kolendowicz, L. (2006). Synoptic situation favorable for violent thunderstorms on the area of Poland. The International Journal of Meteorology, 306(31), 49‑56.
Kolendowicz, L. (2012). Synoptic patterns associated with thunderstorms in Poland. Meteorologische Zeitschrift, 21(2), 145‑156.
Kożuchowski, K. (2020). Meteorologia i klimatologia. Warszawa: Wydawnictwo Naukowe PWN.
Loveless, D.M., Wagner, T.J., Turner, D.D., Ackerman, SA, & Feltz, W.F. (2019). A composite perspective on bore passages during the PECAN campaign. Monthly Weather Review, 147, 1395‑1413. https://doi.org/10.1175/MWR-D-18‑0291.1
Maddox, R.A. (1983). Large-scale meteorological conditions associated with mid-latitude mesoscale convective complexes. Monthly Weather Review, 111, 1475‑1493.
Malinowska, M. (2011). Variability of chosen instability indices in Poland in XXI century. Prace i Studia Geograficzne, 47, 97‑107.
Markowski, P., & Richardson, Y. (2010). Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, Ltd.
Marsham, J., Trier, S., Wecwerth, T., & Wilson, J. (2011). Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP 2002. Monthly Weather Review, 139, 247‑271.
Moore, J., Glass, F., Graves, C., Rochette, S., & Singer, M. (2003). The environment of warm-season elevated thunderstorms associated with heavy rainfall over Central United States. Weather Forecasting, 18(5), 861‑878. https://doi.org/10.1175/15200434 (2003)018<0861:TEOWET>2.0.CO; 2
Mueller, D., Geerts, B., Wang, Z., Deng, M., & Grasmick, C. (2017). Evolution and vertical structure of an undular bore observed on 20 June 2015 during PECAN. Monthly Weather Review, 145, 3775‑3794. https://doi.org/10.1175/MWR-D-16‑0305.1
Parish, T.R. (2016). A comparative study of the 3 June 2015 Great Plains low-level jet. MonthlyWeather Review, 144, 2963‑2979. https://doi.org/10.1175/MWR-D-16‑0071.1
Parker, M.D., Borchardt, B.S., Miller, R.L., & Ziegler, C.L. (2019). Simulated evolution and severe wind production by the 25‑26 June 2015 nocturnal MCS from PECAN. Monthly Weather Review, 148, 183‑209. https://doi.org/10.1175/MWR-D-19‑0072.1
Reif, D.W., & Bluestein, H.B. (2017). A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Monthly Weather Review, 145, 1615‑1639. https://doi.org/10.1175/MWR-D-16‑0340.1
Reif, D.W., & Bluestein, H.B. (2018). Initiation mechanisms of nocturnal convection without nearby surface boundaries over the central and southern Great Plains during the warm season. Monthly Weather Review, 146, 3053‑3078. https://doi.org/10.1175/MWR-D-18‑0040.1
Rochette, S.M., Moore, J.T., & Market, P.S. (1999). The importance of parcel choice in elevated CAPE computations. National Weather Digest, 23, 20‑32.
Siedlecki, M., & Rzepa, M. (2008). Charakterystyka całkowitej energii chwiejności atmosfery nad Europą w latach 1991‑2003. Przegląd Geofizyczny, 53(1), 43-54.
Smith, B., Thompson, R., Grams, J., Broyles, C., & Brooks, H. (2012). Convective modes for significant thunderstorms in the Contiguous United States. Part I: storms classification and climatology, Weather Forecasting, 27(5), 1114‑1135. https://doi.org/10.1175/WAF-D-11‑00115.1
Stopa-Boryczka, M. (1962). Burze w Polsce. Prace Geograficzne, 34. Warszawa: Instytut Geografii PAN.
Taszarek, M., Czernecki, B., & Kozioł, A. (2015). A cloud-to-ground lightning climatology for Poland. Monthly Weather Review, 143, 4285‑4304.
Thompson, R.L., Mead, C.M., & Edwards, R. (2007). Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Weather and Forecasting, 22, 102‑115. https://doi.org/10.1175/WAF969.1
Trier, S., Davis, C., Ahijevych, D., Weisman, M., & Bryan, G. (2006). Mechanisms supporting longlived episodes of propagating nocturnal convection within a 7-day WRF model simulation. Journal Atmospheric Sciences, 63, 2437‑2461.
Twardosz, R., Niedźwiedź, T., & Łupikasza, E. (2010). Burze w Krakowie i ich uwarunkowania cyrkulacyjne. W: T. Ciupa, & R. Suligowski (red.), Woda w badaniach geograficznych (s. 303‑313). Kielce: Instytut Geografii, Uniwersytet Jana Kochanowskiego.
Ustrnul, Z., & Czekierda, D. (2009). Atlas ekstremalnych zjawisk meteorologicznych oraz sytuacji synoptycznych w Polsce, Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Walawender, E., Kielar, R., & Ustrnul, Z. (2015). Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland-climatological approach. Theoretical and Applied Climatology, 127, 229‑240.
Wilson, J., & Roberts, R. (2006). Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Monthly Weather Review, 134, 23‑47. https://doi.org/10.1175/MWR3069.1
oai:rcin.org.pl:182727 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2021.1.2
CBGiOŚ. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Licencja Creative Commons Uznanie autorstwa 4.0
Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -
Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
May 13, 2021
Apr 12, 2021
1184
https://rcin.org.pl./publication/214335
Banach, Anna Kozakiewicz, Anna Kozakiewicz, Michał Liro, Anna
Borkowska, A. Konopko, A.
Litwiński, Robert
Wąsowska, Monika Gabriela (1954– )
Pochłódka, Anna