Metadata language
Geographia Polonica Vol. 95 No. 1 (2022)
Creator:Twardosz, Robert : Autor ; Bielec-Bąkowska, Zuzanna : Autor
Publisher: Place of publishing: Date issued/created: Description: Subject and Keywords:contemporary warming ; extreme temperatures ; warm months ; cold months ; mean sea level pressure ; Europe
Abstract:This study determines the frequency, location and spatial extent of such large-area monthly thermal anomalies, which are referred to in this paper as continental-scale thermal anomalies (CTAs). The research was based on monthly mean air temperature values from 210 weather stations over the 68-year period 1951-2018. A CTA is defined as an anomaly when the monthly mean temperature exceeded the long-term average by at least 2 standard deviations at a minimum of 40 stations. This study attempts to explain the occurrence of such CTAs (negative CTAs- and positive CTAs+) in relation to the circulation conditions over Europe. In the years 1951-2018, there were 16 CTAs- (mainly in winter and autumn) and 25 CTAs+ (predominantly in summer). One manifestation of climate warming is the ever less frequent occurrence of CTAs- and a growing frequency and spatial extent of CTAs+. The immediate cause behind CTAs was the occurrence of characteristic synoptic situations, leading to intensified advection of cold or hot air masses, often driven by radiation factors. The formation of CTAs- was much more often associated with very extensive and long-lasting anticyclonic systems, and that the associated synoptic situations over Europe lasted much longer than in the case of CTAs+.
References:
Anagnostopoulou, C., Tolika, K., Lazoglou, G., Maheras, P. (2017). The exceptionally cold January of 2017 over the Balkan Peninsula: A climatological and synoptic analysis. Atmosphere, 8(252), 1-14. https://doi.org/10.3390/atmos8120252
Andrews, J.F. (1956). The Weather and Circulation of February 1956. Monthly Weather Review, 84(2), 66-74. https://doi.org/10.1175/1520-0493(1956)084<0066:TWACOF>2.0.CO;2
Bardin, M.Y. (2007). Anticyclonic quasi-stationary circulation and its effect on air temperature anomalies and extremes over western Russia. Russian Meteorology and Hydrology, 32(2), 75-84. https://doi.org/10.3103/S106837390702001X
Barry, R.G., Carleton, A.M. (2001). Synoptic and dynamic climatology. London-New York: Routledge. https://doi.org/10.4324/9780203218181
Biuletyn Synoptyczny PIHM (1959-1979). Instytut Meteorologii i Gospodarki Wodnej, Warszawa.
Black, E., Sutton, R. (2007). The influence of oceanic conditions on the hot European summer of 2003. Climate Dynamics, 28(1), 53-66. https://doi.org/10.1007/s00382-006-0179-8
Błażejczyk, K., Twardosz, R., Wałach, P., Czarnecka, K. (2021). Heat strain and mortality effects of prolonged Central European heatwave - an example of June 2019 in Poland. International Journal of Biometeorology, 66(1), 149-161, https://doi.org/10.1007/s00484-021-02202-0
Brugge, R. (1987). Low daytime temperatures over England and Wales on 12 January 1987. Weather, 42(5), 147-152. https://doi.org/10.1002/j.1477-8696.1987.tb06953.x
Buchan, J., Hirschi, J.J., Blaker, A.T., Sinha, B. (2014). North Atlantic SST anomalies and the cold North European weather events of winter 2009/10 and December 2010. Monthly Weather Review, 142(2), 922-932. https://doi.org/10.1175/MWR-D-13-00104.1
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., Codron, F. (2010). Winter 2010 in Europe: A cold extreme in a warming climate. Geophysical Research Letters, 37(20), L20704. https://doi.org/10.1029/2010GL044613
Chen, Y., Hu, Q., Yang, Y., Qian, W. (2017). Anomaly based analysis of extreme heat waves in Eastern China during 1981-2013. International Journal of Climatology, 37(1), 509-523. https://doi.org/10.1002/joc.4724
Dizerens, C., Lenggenhager, S., Schwander, M., Buck, A., Foffa, S. (2017). The 1956 Cold Wave in Western Europe. In Brönnimann S (Ed.) Historical Weather Extremes in Reanalyses. Geographica Bernensia G92, 101-111. https://doi.org/10.4480/GB2017.G92.09
Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T., Quan, X.W., Xu, T., Murray, D. (2011). Was there a basis for anticipating the 2010 Russian heat wave? Geophysical Research Letters, 38(6), L06702. https://doi.org/10.1029/2010GL046582
Dong, B.W., Sutton, R.T., Woollings, T. (2013). The extreme European summer 2012. In T.C. Peterson, M.P. Hoerling, P.A. Stott, S.C. Herring (Eds.), Explaining Extreme Events of 2012 from a Climate Perspective. Bulletin of American Meteorological Society, 94(9), S28-S32. https://doi.org/10.1175/BAMS-D-13-000851
Girguś, R., Strupczewski, W. (1965). Wyjątki ze źródeł historycznych o nadzwyczajnych zjawiskach hydrologiczno-meteorologicznych na ziemiach polskich w wiekach od X do XVI. Warszawa: Wydawnictwa Komunikacji i Łączności.
Gruza, G.V., Ran'kova, E.Y. (2011). Estimation of probable contribution of global warming to the genesis of abnormally hot summers in the European part of Russia. Izvestiya, Atmospheric and Oceanic Physics, 47(6), 661-664. https://doi.org/10.1134/S0001433811060065
Gumiński, R. (1931). Zima 1928/29 w Polsce. Przegląd Geograficzny, 11, 119-127.
Hirschi, J.J.M., Sinha, B. (2007). Negative NAO and cold Eurasian winters: How exceptional was the winter of 1962/1963? Weather, 62(2), 43-48. https://doi.org/10.1002/wea.34
Hoy, A., Hänsel, S., Skalak, P, Ustrnul, Z., Bochníček, O. (2016). The extreme European summer of 2015 in a long-term perspective. International Journal of Climatology, 37(2): 943-962. https://doi.org/10.1002/joc.4751
Jones, G.S., Stott, P.A., Christidis, N. (2008). Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. Journal of Geophysical Research: Atmospheres, 113(D2), D02109. https://doi.org/10.1029/2007JD008914
Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., … & Petrovic, P. (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22(12), 1441-1453. https://doi.org/10.1002/joc.773
Krzyżewska, A., Dyer, J. (2018). The August 2015 mega heatwave in Poland in the context of past events. Weather, 73(7), 207-214. https://doi.org/10.1002/wea.3244
Kundzewicz, Z.W., Huang, S. (2010). Seasonal temperature extremes in Potsdam. Acta Geophysica, 58(6), 1115-1133. https://doi.org/10.2478/s11600-010-0026-5
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303(5663), 1499-1503. https://doi.org/10.1126/science.1093877
Luterbacher, J., Werner, J.P., Smerdon, J.E., Fernández-Donado, L., González-Rouco, F.J., Barriopedro, D., … & Zerefos, C. (2016). European summer temperatures since Roman times. Environmental Research Letters, 11(2), 024001. https://doi.org/10.1088/1748-9326/11/2/024001
Maignan, F., Bréon, F.M., Vermote, E., Ciais, P., Viovy, N. (2008). Mild winter and spring 2007 over western Europe led to a widespread early vegetation onset. Geophysical Research Letters, 35(2) , L02404. https://doi.org/10.1029/2007GL032472
Muthers, S., Laschewski, G., Matzarakis, A. (2017). The Summers 2003 and 2015 in South-West Germany: HeatWaves and Heat-Related Mortality in the Context of Climate Change. Atmosphere, 8(11), 224. https://doi.org/10.3390/atmos8110224
Pfister, C. (1999). Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen (1496-1995). Bern, Stuttgart, Wien: Verlag, Paul Haupt.
Porębska, M., Zdunek, M. (2013). Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001-2011. Meteorologische Zeitschrift, 22(5): 533-540. https://doi.org/10.1127/0941-2948/2013/0455
Sinclair, V.A., Mikkola, J., Rantanen. M, Räisänen, J. (2019). The summer 2018 heatwave in Finland. Weather, 74: 403-409. https://doi.org/10.1002/wea.3525
Sippel, S., Otto, F.E.L., Flach, M., van Oldenborgh, G.J. (2016). The role of anthropogenic warming in the 2015 central European heatwaves. Bulletin of American Meteorological Society, 97(12), S51-S56. https://doi.org/10.1175/BAMS-D-16-0150.1
Stěpánek, P., Skalák, P., Farda, A., Zahradníček, P. (2011). Climate change in the area of the Czech Republic according to ALADIN-Climate/CZ simulations. In B. Šiška, M. Hauptvogl, M. Eliašová (Eds.), Bioclimate: Source and Limit of Social Development, International Scientific Conference, 6th-9th September 2011, Topoľčianky, Slovakia.
Sulikowska, A., Wypych, A. (2021). Seasonal variability of trends in regional hot and warm temperature extremes in Europe. Atmosphere, 12(5): 612. https://doi.org/10.3390/atmos12050612
Tang, Q., Leng, G., Groisman, P.Y. (2012). European hot summers associated with a reduction of cloudiness. Journal of Climate, 25(10), 3637-3644. https://doi.org/10.1175/JCLI-D-12-00040.1
Tomczyk, A.M., Bednorz, E., Półrolniczak, M., Kolendowicz, L. (2019). Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology 137 (3-4): 1909-1923. https://doi.org/10.1007/s00704-018-2715-y
Tomczyk, A.M., Owczarek, M. (2020). Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology, 139(3), 893-905. https://doi.org/10.1007/s00704-019-02998-3
Tselepidaki, I.G., Asimakopoulos, D.N., Melitsiotis, D.A. (1990). A cold spell during March 1987 over Greece. Weather, 45(2), 42-47. https://doi.org/10.1002/j.1477-8696.1990.tb05044.x
Twardosz, R. (2019). Anomalously warm months in 2018 in Poland in relation to airflow circulation patterns. Weather 74(11), 374-382. https://doi.org/10.1002/wea.3588
Twardosz, R., Batko, A. (2012). Heat waves in Central Europe (1991-2006). International Journal of Global Warming, 4(3/4), 261-272. https://doi.org/10.1504/IJGW.2012.049430
Twardosz, R., Kossowska-Cezak, U. (2019). Thermal anomalies in the Mediterranean and in Asia Minor (1951-2010). International Journal of Global Warming, 18(3-4), 304-322. https://doi.org/10.1504/IJGW.2019.101089
Twardosz, R., Kossowska-Cezak, U. (2020). Winter air temperature in Warsaw depending on the NAO index and regional circulation. Időjárás / Quarterly Journal of the Hungarian Meteorological Service, 124(1): 97-11. http://doi.org/10.28974/idojaras.2020.1.5
Twardosz, R., Kossowska-Cezak, U. (2021). Large-area thermal anomalies in Europe (1951-2018). Temporal and spatial patterns. Atmospheric Research, 251, 105434. https://doi.org/10.1016/j.atmosres.2020.105434
Twardosz, R., Walanus, A., Guzik, I. (2021). Warming in Europe: Recent trends in annual and seasonal temperatures. Pure and Applied Geophysics, 178(10), 4021-4032, https://doi.org/10.1007/s00024-021-02860-6
Wibig, J. (2021). Hot days and heat waves in Poland in the period 1951-2019 and the circulation factors favoring the most extreme of them. Atmosphere, 12(3), 340. https://doi.org/10.3390/atmos12030340
Wijngaard, J.B., Klein Tank, A.M.G., Können, G.P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology, 23(6), 679-692. https://doi.org/10.1002/joc.906
Zvyagintsev, A.M., Blum, O.B., Glazkova, A.A., Kotel'nikov, S.N., Kuznetsova, I.N., Lapchenko, V.A., … & Shalygina, I.Y. (2011). Air pollution over European Russia and Ukraine under the hot summer conditions of 2010. Izvestiya, Atmospheric and Oceanic Physics, 47(6): 699-707. https://doi.org/10.1134/S0001433811060168
doi:10.7163/GPol.0228 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0228
Source:CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Creative Commons Attribution BY 4.0 license
Terms of use:Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure
Access: