Object structure
Title:

Changes in the thermal regime of rivers in Poland with different sizes and level of human impact based on daily data (1961-2020)

Subtitle:

Geographia Polonica Vol. 98 No. 1 (2025)

Creator:

Tomalski, Przemysław : Autor Affiliation ORCID ; Pius, Bożena : Autor Affiliation ORCID ; Jokiel, Paweł : Autor Affiliation ORCID ; Marszelewski, Włodzimierz : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2025

Description:

24 cm

Subject and Keywords:

Geography

Abstract:

The article examines thermal parameters of rivers during climate warming, focusing on quasi-natural rivers and those heavily impacted by humans. It compares two periods (1961-1992 and 1993-2020) based on daily water temperatures. Results show rivers warmed by 0.7-1.0°C in the second period, except those strongly polluted, like the Przemsza River, which cooled by up to -1.2°C. In quasi-natural rivers, the largest temperature rise occurred in spring (up to 3.5°C). In contrast, heavily impacted rivers showed lower, often negative changes. The study highlights the impact of climate warming and human activity on river thermal regime.

References:

Arora, R., Tockner, K., & Venohr, M. (2016). Changing river temperatures in northern Germany: trends and drivers of change. Hydrological Processes, 30, 3084-3096. https://doi.org/10.1002/hyp.10849 DOI
Bartnik, A., & Jokiel, P. (2021). The influence of treated wastewater from the Lodz city agglomeration on the ice regime and water temperature of the Ner river. Miscellanea Geographica, 25 (3), 194-203. https://doi.org/10.2478/mgrsd-2020-0061 DOI
Bartnik, A., & Jokiel, P. (2021). Formy i dynamika zasilania Neru wodami pościekowymi z aglomeracji łódzkiej. Czasopismo Geograficzne, 93 (1), 33-51. https://doi.org/10.12657/czageo-93-02 DOI
Bartnik, A., & Tomalski, P. (2018). Diurnal variations of the basic physic-chemical characteristics of a small urban river - The Sokołówka in Lódź - a case study. Acta Scientiarum Polonorum; Formatio Circumiec-tus, 17 (3), 23-38. https://doi.org/10.15576/ASP.FC/2018.17.3.23 DOI
Basarin, B., Lukić, T., Pavić, D., & Wilby, R. L. (2016). Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30 (18), 3315-3329. https://doi.org/10.1002/hyp.10863 DOI
Bonacci, O., Durin, B., Roje Bonacci, T., & Bonacci, D. (2022). The Influence of Rservoirs on Water Tem-perature in the downstream part of an open watercourse: A case study at Botovo station on the DravaRiver. Water, 14, 3534. https://doi.org/10.3390/w14213534 DOI
Burrell, B. C., Beltaos, S., & Turcotte, B. (2023). Effects of climate change on river-ice processes and ice jams. International Journal of River Basin Management, 21 (3), 421-441. https://doi.org/10.1080/15715124.2021.2007936 DOI
Caissie, D. (2006). The thermal regime of rivers: A review. Freshwater Biology, 51(8), 1389-1587.https://doi.org/10.1111/j.1365-2427.2006.01597.x DOI
Caissie, D., El-Jabi, N., & Satish, M. G. (2001). Modelling of maximum daily water temperatures in a small stream using air temperatures. Journal of Hydrology, 251(1-2), 14-28. https://doi.org/10.1016/S0022-1694(01)00427-9 DOI
Canales, F. A., Jadwiszczak, P., Jurasz, J., Wdowikowski, M., Ciapała, B., & Kaźmierczak, B. (2020). The impact of long-term changes in air temperature on renewable energy in Poland. Science of the TotalEnvironment, 729. https://doi.org/10.1016/j.scitotenv.2020.138965 DOI
Chezik, K. A., Lester, N. P., Venturelli, P. A. (2014). Fish growth and degree-days I: Selecting a base tem-perature for a within-population study. Canadian Journal of Fisheries and Aquatic Sciences, 71, 47-55.https://doi.org/10.1139/cjfas-2013-0295 DOI
Degirmendžić, J., Kożuchowski, K., & Żmudzka, E. (2004). Changes of air temperature and precipitation in Poland in the period 1951-2000 and their relationship to atmospheric circulation. International Journal of Climatology, 24, 291-310. https://doi.org/10.1002/joc.1010 DOI
Deinet, S., Scott-Gatty, K., Rotton, H., Twardek, W. M., Marconi, V., McRae, L., … & Barkhuysen, A. (2020). The Living Planet Index (LPI) for migratory freshwater fish: Technical Report. World Fish Migration Foundation. https://worldfishmigrationfoundation.com/wp-content/uploads/2024/05/LPI_migratory-freshwater-fishes-2024_Technical-report.pdf
Docherty, C. L., Dugdale, S. J., Milner, A. M., Abermann, J., Lund, M., & Hannah, D. M. (2019). Arctic river temperature dynamics in a changing climate. River Research and Applications, 35(8), 1212-1227. https://doi:10.1002/rra.3537. DOI
Dokulil, M. T. (2018). Climate warming affects water temperature in the River Danube and tributaries - present and future perspectives. Geomorphologica Slovaca et Bohemica, 18.
Du, J., Jia, Y., Hao, C., Qiu, Y., Niu, C., & Liu, H. (2019). Temporal and spatial changes of blue water andgreen water in the Taihang Mountain Region, China, in the past 60 years. Hydrological Sciences Jour-nal, 64(16), 2040-2056. https://doi.org/10.1080/02626667.2019.1599119 DOI
Dugdale, S. J., Hannah, D. M., & Malcolm, I. A. (2017). River temperature modelling: A review of process-based approaches and future directions. Earth Science Reviews, 175, 97-11.https://doi.org/10.1016/j.earscirev.2017.10.009 DOI
Garner, G., Hannah, D. M., Sadler, J. P., & Orr, H. G. (2014). River temperature regimes of England andWales: spatial patterns, inter-annual variability and climatic sensitivity. Hydrological Processes, 28(22),5583-5598. https://doi: 10.1002/hyp.9992 DOI
Graf, R. (2018). Analysis of Granger causality between daily and monthly temperatures of water and air,as illustrated with the example of Noteć river. Acta Scientiarum Polonorum, Formatio Circumiectus,18(3), 101-117. https://doi.org/10.15576/ASP.FC/2018.17.3.101 DOI
Graf, R. (2019). A multifaceted analysis of the relationship between daily temperature of river water andair. Acta Geophysica, 67(3), 905-920. https://doi.org/10.1007/s11600-019-00285-3 DOI
Graf, R., & Aghelpour, P. (2021). Daily river water temperature prediction: A comparison between neuralnetwork and stochastic techniques. Atmosphere, 12. https://doi.org/10.3390/atmos12091154 DOI
Graf, R., & Wrzesiński, D. (2019). Relationship between water temperature of Polish rivers and large-scale atmospheric circulation. Water, 11(8). https://doi.org/10.3390/w11081690 DOI
Graf, R., & Wrzesiński, D. (2020). Detecting patterns of changes in river water temperature in Poland.Water, 12(5). https://doi.org/10.3390/w12051327 DOI
Graf, R., & Wrzesiński, D. (2020). Zróżnicowanie czasowo-przestrzenne tendencji zmian termiki wód rzecz-nych w Polsce. In D. Wrzesiński, R. Graf, A. Perz, K. Plewa (Eds.), Naturalne i antropogeniczne zmianyobiegu wody. Współczesne problemy i kierunki badań. Poznań: Bogucki Wydawnictwo Naukowe.
Guo, W., He, N., Wang, H., Zhang, H., & Fu, Y. (2023). Protecting river eco-hydrological processes:Insights from water temperature studies. Aquatic Sciences, 85(4), 110.https://doi.org/10.1007/s00027-023-01006-1 DOI
Hannah, D. M., & Garner, G. (2015). River water temperature in the United Kingdom: changes over the20th century and possible changes over the 21st century. Progress in Physical Geography, 39(1), 68-92.https://doi.org/10.1177/0309133314550669 DOI
Hardenbicker, P., Viergutz, C., Becker, A., Kirchesch, V., Nilson, E., & Fischer, H. (2017). Water tempera-ture increases in the river Rhine in response to climate change. Regional Environmental Change, 17,299-308. https://doi.org/10.1007/s10113-016-1006-3 DOI
Hari, R. E., Livingstone, D. M., Siber, R., Burkhardt‐Holm, P., & Guettinger, H. (2006). Consequences of cli-matic change for water temperature and brown trout populations in Alpine rivers and streams. GlobalChange Biology, 12(1), 10-26. https://doi.org/10.1111/j.1365-2486.2005.001051.x DOI
Humphreys, A. A., & Humphreys, A. A., & Abbot, H. L. (1867). Report upon the physics and hydraulics of the Mississippi river.Government Printing Office, Washington. https://quod.lib.umich.edu/m/moa/ahe3908.0013.001
IPCC (2019). Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H. O., Roberts, D. C., Masson- Delmotte, V., Zhai, P., Tignor, M., Poloc- zanska, E., Mintenbeck, K., Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M. (Eds.)]. https://www.ipcc.ch/srocc/
IPCC (2021). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribu-tion of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on ClimateChange [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L.Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield,O. Yelekci, R. Yu, and B. Zhou (eds.)]. https://www.ipcc.ch/report/ar6/wg1/
Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes. Climate Change, 113(2), 499-524. https://doi.org/10.1007/s10584-011-0326-z DOI
Isaak, D. J., Luce, C. H., Chandler, G. L., Horan, D. L., & Wollrab, S. P. (2018). Principal components of thermal regimes in mountain river networks. Hydrology and Earth System Sciences, 22(12), 6225-6240. https://doi.org/10.5194/hess-22-6225-2018 DOI
Janson, E., Gzyl, G., & Banks, D. (2009). The occurrence and quality of mine water in the Upper Silesian Coal Basin, Poland. Mine Water and the Environment, 28(3), 232-244. https://doi.org/10.1007/s10230-009-0079-3 DOI
Ji, Z. G. (2017). Hydrodynamics and water quality: modelling rivers, likes and estuaries. John Wiley & Sons. https://doi.org/10.1002/9780470241066.ch2 DOI
Johnson, M. F., Albertson, L. K., Algar, A. C., Dugdale, S. J., Edwards, P., England, J., … & Wood, P. J. (2024). Rising water temperature in rivers: Ecological impacts and future resilience. Wiley Interdiscipli-nary Reviews: Water, 11(4). https://doi.org/10.1002/wat2.1724 DOI
Jokiel, P. (1994). Groundwater resources, renewal and flow in the active exchange zone in Poland. Łódź: Łódzkie Towarzystwo Naukowe.
Jokiel, P., & Bartnik, A. (2020). Ner: Monografia hydrologiczna niekochanej rzeki. Łódź: Wydawnictwo Uniwersytetu Łódzkiego. DOI
Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M., Seekell, D., … & Wingate, R. L.(2010). Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environ-ment, 8(9), 461-466. https://doi.org/10.1890/090037 DOI
Kędra, M., & Wiejaczka, Ł. (2018). Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Science of The Total Environment, 626.https://doi.org/10.1016/j.scitotenv.2017.10.044 DOI
Lazăr, N. N., Simionov, I. A., Petrea, Ș. M., Iticescu, C., Georgescu, P. L., Dima, F., & Antache, A. (2024). The influence of climate changes on heavy metals accumulation in Alosa immaculata from the Dan-ube River Basin. Marine Pollution Bulletin, 200. https://doi.org/10.1016/j.marpolbul.2024.116145 DOI
Lorenzo-Gonzalez, M. A., Quílez, D., & Isidoro, D. (2023). Factors controlling the changes in surface water temperature in the Ebro River Basin. Journal of Hydrology: Regional Studies, 47. https://doi.org/10.1016/j.ejrh.2023.101379 DOI
Łaszewski, M. A. (2015). The influence of small reservoirs on lowland stream water temperature on the example of Jeziorka and Rządza rivers. Scientific Review - Engineering and Environmental Sciences, 67, 13-25.
Łaszewski, M. A. (2018). Diurnal water temperature dynamics in lowland rivers: A case study from Cen-tral Poland. Journal of Water and Land Development, 36, 89-97. http://doi: 10.2478/jwld-2018-0009 DOI
Łupikasza, E. B., & Małarzewski, Ł. (2023). Trends in the indices of precipitation phases under current warming in Poland, 1966-2020. Advances in Climate Change Research, 14(1), 97-115. https://doi.org/10.1016/j.accre.2022.11.012 DOI
Magritsky, D. V., Vasilenko, A. N., Frolova, N. L. & Shevchenko, A. I. (2023). Temporal and Spatial Patterns of Changes in Thermal Regime of the Rivers in the Northeast of the Asian Part of Russia. 1. Assessment of Changes in the Water Temperature. Water Resources, 50(2), 190-201. https://doi.org/10.1134/S0097807823020124 DOI
Marszelewski, W., Jokiel, P., Pius, B., & Tomalski, P. (2022). River thermal seasons in the Central European Plain and their changes during climate warming. Journal of Hydrology, 610. http://doi.org/10.1016/j.jhydrol.2022.127945 DOI
Marszelewski, W., & Pius, B. (2016). Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal, 61(8), 1430-1442. DOI
Marszelewski, W., & Pius, B. (2021). Thermal renaturation of rivers in the post-industrial age - An example of the Przemsza River basin (Poland). Science of The Total Environment, 770. https://doi.org/10.1016/j.scitotenv.2021.145207 DOI
Matysik, M. (2018). The impact of mine water discharge on the runoff of the rivers of the Upper Silesian Coal Basin. Katowice: Uniwersytet Śląski.
Mehta, K. (2017). Impact of temperature on contaminants toxicity in fish fauna: a review. Indian Journal of Science and Technology, 10(18), 1-6. https://doi.org/10.17485/ijst/2017/v10i18/112663 DOI
Michel, A., Brauchli, T., Lehning, M., Schaefli, B., & Huwald, H. (2020). Stream temperature and discharge evolution in Switzerland over the last 50 years: Annual and seasonal behaviour. Hydrology and Earth System Sciences, 24(1), 115-142. https://doi.org/10.5194/hess-24-115-2020 DOI
Moatar, F., & Gailhard, J. (2006). Water temperature behaviour in the River Loire since 1976 and 1881. Comptes Rendus Geoscience, 338, 319-328. https://doi.org/10.1016/j.crte.2006.02.011 DOI
Mohseni, O., & Stefan, H. G. (1999). Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218, 128-141. https://doi.org/10.1016/S00221694(99)00034-7 DOI
Noa-Yarasca, E., Chaca Ayuque, D., Galvan Ccora, H. A., Ayala Bizarro, I. A., & Arancibia, A. (2022). Review of statistical water temperature models for a Peruvian Andean River. Journal of Environmental Sciences and Engineering, B 11, 155-164. https://doi.org/10.17265/2162-5263/2022.05.001 DOI
Olden, J. D., & Naiman, R. J. (2010). Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86-107. https://doi:10.1111/j.1365-2427.2009.02179.x DOI
Orr, H. G., Simpson, G. L., des Clers, S., Watts, G., Hughes, M., Hannaford, J., & Evans, R. (2015). Detecting changing river temperatures in England and Wales. Hydrological Processes, 29(5), 752-766. https://doi.org/10.1002/hyp.10181 DOI
Ouellet, V., St-Hilaire, A., Dugdale, S. J., Hannah, D. M., Krause, S., & Proulx-Ouellet, S. (2020). River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems. Science of the Total Environment, 737. https://doi:10.1016/j.scitotenv.2020.139679 DOI
Pekarova, P., Halmova, D., Miklanek, P., Onderka, M., Pekar, J., & Skoda, P. (2008). Is the water temperature of the Danube River at Bratislava, Slovakia, rising? Journal of Hydrometeorology, 5, 1115-1122. https://doi.org/10.1175/2008JHM948.1. DOI
Pohle, I., Helliwell, R., Aube, C., Gibbs, S., Spencer, M., & Spezia, L. (2019). Citizen science evidence from the past century shows that Scottish rivers are warming. Science of the Total Environment, 659, 53-65. https://doi.org/10.1016/j.scitotenv.2018.12.325 DOI
Pistelok, F. (2016). Analiza wpływu zanieczyszczeń ze źródeł komunalnych na stan czystości wód powierzchniowych na przykładzie zlewni Przemszy. Works and Studies 8. Zabrze: Instytut Inżynierii Środowiska Polskiej Akademii Nauk.
Piccolroaz, S., Calamita, E., Majone, B., Gallice, A., Siviglia, A., & Toffolon, M. (2016). Prediction of river water temperature: A comparison between a new family of hybrid models and statistical approaches. Hydrological Process. 30, 3901-3917. https://doi.org/10.1002/hyp.10913 DOI
Ptak, M., Choiński, A., & Kirviel, J. (2016). Long-term water temperature fluctuations in coastal rivers (southern Baltic) in Poland. Bulletin of Geography. Physical Geography Series, 11, 35-42. https://doi.org/10.1515/bgeo-2016-0013 DOI
Ptak, M., Sojka, M., Graf, R., Choiński, A., Senlin, Z., & Nowak, B. (2022). Warming Vistula River - the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. Journal of Hydrology and Hydromechanics, 70(1), 1-11. https://doi.org/10.2478/johh-2021-00322 DOI
Radtke, G., Dobosz, S., 2015. Thermal characteristics of Radunia River supplying water for the Rutki trout breeding center. Komunikaty Rybackie, 4(147), 1-5.
Senlin, Z., You, L., Graf, R., Wrzesiński, D., Sojka, M., Bowen, S., Lingzhong, K., Qingfeng, J., & Wenguang, L. (2022). Reconstruction of long-term water temperature indicates significant warming in Polish rivers during 1966-2020. Journal of Hydrology: Regional Studies, 44. https://doi.org/10.1016/j.ejrh.2022.10128 DOI
Shrestha, R. R., & Pesklevits, J. C. (2022). Modelling spatial and temporal variability of water temperature across six rivers in Western Canada. River Research and Applications, 39, 200-213. https://doi.org/10.1002/rra.4072 DOI
Solik-Heliasz, E. (2002). Assessment of possibility of heat recovery from waters pumped from hard coal mines. Research Reports Mining and Environment, 2, 17-24
Swansburg, E., El-Jabi, N., Caissie, D., & Chaput, G. (2004). Hydrometeorological trends in the Miramachi river, Canada: implications for Atlantic salmon growth. North American Journal of Fisheries Management, 24, 561-576. https://doi.org/10.1577/M02-181.1 DOI
Toffolon, M., & Piccolroaz, S. (2015). A hybrid model for river water temperature as a function of air temperature and discharge. Environmental Research Letters, 10(11), 114011. https://doi.org/10.1088/1748-9326/10/11/114011 DOI
van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., & Kabat, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change, 23(2), 450-464. https://doi.org/10.1016/j.gloenvcha.2012.11.002 DOI
van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., & Kabat, P. (2011). Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47(2). https://doi.org/10.1029/2010WR009198 DOI
van Vliet, M. T. H., Yearsley, J. R., Franssen, W. H. P., Ludwig, F., Haddeland, I., Lettenmaier, D. P., & Kabat, P. (2012). Coupled daily streamflow and water temperature modelling in large river basins. Hydrological Earth Systems Sciences, 16, 4303-4321. https://doi.org/10.5194/hess-16-4303-2012 DOI
Venturelli, P. A., Lester, N. P., Marshall, T. R.,. & Shuter, B. J. (2010). Consistent patterns of maturity and density dependent growth among populations of walleye (Sander vitreus): Application of the growing degree-day metric. Canadian Journal Fisheries Aquatic Sciences, 67, 1057-1067. DOI
Webb, B. W., Clack, P. D., & Walling, D. E. (2003). Water-air temperature relationships in a Devon river system and the role of flow. Hydrological processes, 17(15), 3069-3084. https://doi.org/10.1002/hyp.1280 DOI
Webb, B. W., & Nobilis, F. (1995). Long term water temperature trends in Austrian rivers. Hydrological Sciences Journal, 40(1), 83-96. https://doi.org/10.1080/02626669509491392 DOI
Webb, B. W., & Nobilis, F. (2007). Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences Journal, 52(1), 74-85. https://doi.org/10.1623/hysj.52.1.74 DOI
Wehrly, K. E., Brenden, T. O., & Wang, L. (2009). A comparison of statistical approaches for Predicting Stream Temperatures across Heterogeneous Landscapes. Journal of American Water Resources Association, 45(4), 986-97. https://doi.org/10.1111/j.1752-1688.2009.00341.x DOI
Wibig, J., & Jędruszkiewicz, J. (2023). Recent changes in the snow cover characteristics in Poland. International Journal of Climatology, 43(15), 6925-6938. https://doi.org/10.1002/joc.8178 DOI
WMO. (2020). WMO Statement on the State of the Global Climate in 2019. World Meteorological Organization (WMO). 1248 Geneva, 44. https://library.wmo.int/idurl/4/56228
Yang, D., Liu, B., & Ye, B. (2005). Stream temperature changes over Lena River basin in Siberia. Geophysical Research Letters, 32. https://doi.org./10.1029/2004GL021568 DOI
Yang, D., Marsh, P., & Ge Sh., 2014. Heat flux calculations for Mackenzie and Yukon Rivers. Polar Science, 8(3), 232-241. https://doi.org/10.1016/j.polar.2014.05.001 DOI
Yang, D., & Peterson, A. (2017). River water temperature in relation to local air temperature in the Mackenzie and Yukon basins. Arctic, 70, 47-58. https://doi.org/10.14430/arctic4627 DOI
Yang, D., Shrestha, R. R., Li Yung Lung, J., Tank, S., & Park, H. (2021). Heat flux, water temperature and discharge from 15 northern Canadian rivers draining to Arctic Ocean and Hudson Bay. Global and Planetary Change, 204. https://doi.org/10.1016/j.gloplacha.2021.103577 DOI
Zhu, R., Wang, H., Chen, J., Shen, H., & Deng, X. (2018). Use the predictive models to explore the key factors affecting phytoplankton succession in Lake Erhai, China. Environmental Science and Pollution Research, 25, 1283-1293. https://doi.org/10.1007/s11356-017-0512-2 DOI

Relation:

Geographia Polonica

Volume:

98

Issue:

1

Start page:

29

End page:

52

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0291

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: