Metadata language
Ice cover phenology of two high-altitude lakes on the Slovak side of the Tatra Mts. (2016-2024)
Subtitle:Geographia Polonica Vol. 98 No. 1 (2025)
Creator:
Hrivnáková, Kristína
:
Autor
;
Čajková, Silvia
:
Autor
;
Hreško, Juraj
:
Autor
Polska -- geografia -- czasopisma [KABA] ; Geografia -- czasopisma [KABA]
Abstract:
The first multi-year examination of the phenological phases of lake ice cover in this area utilized a two-source method to address the constraints of this environment. Higher air temperatures impacted the reduction in ice cover duration, while its fluctuation and windiness influenced the occurrence of repeated freeze-thaw events, ultimately extending these periods. The extended duration of ice cover at higher elevation lake (CID +56 days, IP +75 days) can be attributed to later and prolonged break-ups (BUS +48 days, BUE +64 days, BUD +16 days). Studying these factors’ interaction with the lake’s characteristics (such as their morphology and the presence of flow) and their surroundings (including topography) has enhanced our understanding of the dynamics of this crucial component of the high mountain cryosphere.
Adler, C., Wester, P., Bhatt, I., Huggel, C., Insarov, G. E., Morecroft, M. D., … & Prakash, A. (2022). CrossChapter Paper 5: Mountains. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2273-2318). Cambridge, UK and New York, NY, USA: Cambridge University Press. https://doi.org/10.1017/9781009325844.022
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., … & Winder, M. (2009). Lakes as sentinels of climate change. Limnology and Oceanography, 54(6), 2283-2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G., Korhonen, J., … & Granin, N. G. (2012). Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005). Climatic Change, 112(2), 299-323. https://doi.org/10.1007/s10584-011-0212-8
Bohuš, I. (1996). Od A po Z o názvoch Vysokých Tatier. Tatranská Lomnica (SR): ŠL TANAP.
Brown, L. C., & Duguay, C. R. (2010). The response and role of ice cover in lake-climate interactions. Progress in Physical Geography: Earth and Environment, 34(5), 671-704. https://doi.org/10.1177/0309133310375653
Cai, Y., Ke, CQ., Yao, G., & Shen, X. (2020). MODIS-observed variations of lake ice phenology in Xinjiang, China. Climatic Change, 158(3), 575-592. https://doi.org/10.1007/s10584-019-02623-2
Caldwell, T. J., Chandra, S., Feher, K., Simmons, J. B., & Hogan, Z. (2020). Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use. Global Change Biology, 26(10), 5475-5491. https://doi.org/10.1111/gcb.15258
Choiński, A. (2017). Ice phenomena on Lake Wielki Staw in the Valley of Five Polish Lakes. Limnological Review, 17(2), 71-77. https://doi.org/10.1515/limre-2017-0007
Choiński, A., Kolendowicz, L., Pociask-Karteczka, J., & Sobkowiak, L. (2010). Changes in lake ice cover on the Morskie Oko Lake, Poland (1971-2007). Advances in Climate Change Research, 1(2), 71-75. https://doi.org/10.3724/SP.J.1248.2010.00071
Choiński, A., Ptak, M., & Strzelczak, A. (2013). Areal variation in ice cover thickness on Lake Morskie Oko (Tatra Mountains). Carpathian Journal of Earth and Environmental Sciences, 8(3), 97-102.
Du, J., Kimball, J. S., Duguay, C., Kim, Y., & Watts, J. D. (2017). Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. Cryosphere, 11(1), 47-63. https://doi.org/10.5194/tc-11-47-2017
Duguay, C. R., Bernier, M., Gauthier, Y., & Kouraev, A. (2015). Remote Sensing of the Cryosphere. In M. Tedesco (ed.), Remote sensing of lake and river ice (pp. 273-306). John Wiley & Sons, Ltd.
Duguay, C. R., Flato, G. M., Jeffries, M. O., Ménard, P., Morris, K., & Rouse, W. R. (2003). Ice-cover variability on shallow lakes at high latitudes: model simulations and observations. Hydrological Processes, 17(17), 3465-3483. https://doi.org/10.1002/hyp.1394
Filazzola, A., Blagrave, K., Imrit, M. A., & Sharma, S. (2020). Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. Geophysical Research Letters, 47(18), 89608. https://doi.org/10.1029/2020GL089608
Fountain, A. G., Campbell, J. L., Schuur, E. A., Stammerjohn, S. E., Williams, M. W., & Ducklow, H. W. (2012). The disappearing cryosphere: Impacts and ecosystem responses to rapid cryosphere loss. BioScience, 62(4), 405-415. https://doi.org/10.1525/bio.2012.62.4.11
Gądek, B. (2014). Climatic sensitivity of the non-glaciated mountains cryosphere (Tatra Mts., Poland and Slovakia). Global and Planetary Change, 121, 1-8. https://doi.org/10.1016/j.gloplacha.2014.07.001
Gądek, B., Szumny, M., & Szypuła, B. (2020). Classification of the Tatra Mountain lakes in terms of the duration of their ice cover (Poland and Slovakia). Journal of Limnology, 79(1), 70-81. https://doi.org/10.4081/jlimnol.2019.1920
Gregor, V., & Pacl, J. (2005). Hydrológia Tatranských jazier. Acta Hydrologica Slovaca, 6(1), 161-187.
Hendricks, F. H-J., & Scherrer, S. C. (2008). Freezing of lakes on the Swiss Plateau in the period 1901-2006. International Journal of Climatology, 28(4), 421-433. https://doi.org/10.1002/joc.1553
Hodgkins, G. A. (2013). The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England. Climate Change, 119, 705-718. https://doi.org/10.1007/s10584-013-0766-8
Kapusta, J., Hreško, J., Petrovič, F., Tomko-Králo, D., & Gallik, J. (2018). Water surface overgrowing of the Tatra's lakes. Ekológia (Bratislava), 37(1), 11-23. https://doi.org/10.2478/eko-2018-0002
Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, C., … & Zdorovennov, R. (2012). Physics of seasonally ice-covered lakes: A review. Aquatic Sciences, 74, 659-682. https://doi.org/10.1007/s00027-012-0279-y
Knoll, L. B., Sharma, S., Denfeld, B. A., Flaim, G., Hori, Y., Magnuson, J. J., Straile, D., & Weyhenmeyer, G. A. (2019). Consequences of lake and river ice loss on cultural ecosystem services. Limnology and Oceanography Letters, 4(5), 119-131. https://doi.org/10.1002/lol2.10116
Konček, M. & Orlicz, M. (1974). Teplotné pomery. In Konček, M. Klíma Tatier. Bratislava: Veda.
Kouraev, A. V., Semovski, S. V., Shimaraev, M. N., Mognard, N. M., Legrésy, B., & Rémy, F. (2007). The ice regime of Lake Baikal from historical and satellite data: Relationship to air temperature, dynamical, and other factors. Limnology and Oceanography, 52(3), 1268-1286. https://doi.org/10.4319/lo.2007.52.3.1268
Kropáček, J., Maussion, F., Chen, F., Hoerz, S., & Hochschild, V. (2013). Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. The Cryosphere, 7(1), 287-301. https://doi.org/10.5194/tc-7-287-2013
L'Abée-Lund, J. H., Vøllestad, L. A., Brittain, J. E., Kvambekk, Å. S., & Solvang, T. (2021). Geographic variation and temporal trends in ice phenology in Norwegian lakes during the period 1890-2020. The Cryosphere, 15(5), 2333-2356. https://doi.org/10.5194/tc-2020-374
Latifovic, R., & Pouliot, D. (2007). Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sensing of Environment, 106(4), 492-507. https://doi.org/10.1016/j.rse.2006.09.015
Lei, R. B., Li, Z. J., Zhang, Z. H., & Chen, Y. F. (2011). Thermodynamic processes of lake ice and landfast ice around Zhongshan Station, Antarctica. Advances in Polar Science, 22(3), 143-152. https://doi.org/10.3724/SP.J.1085.2011.00143
Leppäranta, M. (2009). Modelling the Formation and Decay of Lake Ice. In George, G. (Ed.), The Impact of Climate Change on European Lakes (pp. 63-83), London: Springer. https://doi.org/10.1007/978-90-481-2945-4
Leppäranta, M., & Wen, L. (2022). Ice Phenology in Eurasian Lakes over Spatial Location and Altitude. Water, 14(7). https://doi.org/10.3390/w14071037
Lindner, L., Dzierżek, J., Marciniak, B., & Nitychoruk, J. (2003). Outline of Quaternary glaciations in the Tatra Mountains: their development, age and limits. Geological Quarterly, 47(3), 269-280.
Livingstone, D. M. (1997). Break-up dates of Alpine Lakes as proxy data for local and regional mean surface air temperatures. Climatic Change, 37, 407-439. https://doi.org/10.1023/A:1005371925924
Livingstone, D. M., Adrian, R., Blenchner, T., George, G., & Weyhwenmeyer, G. A. (2009). Lake Ice Phenology. In George, G. (Ed.), The Impact of Climate Change on European Lakes (pp. 51-61), London: Springer. https://doi.org/10.1007/978-90-481-2945-4
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., … & Vuglinski, V. S. (2000). Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289(5485), 1743-1746. https://doi.org/10.1126/science.289.5485.1743
Makos, M., Dzierżek, J., Nitychoruk, J., & Zreda, M. (2014). Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum. Quaternary Research, 82(1), 1-13. https://doi.org/10.1016/j.yqres.2014.04.001
Newton, A. M. W., & Mullan, D. J. (2021). Climate change and Northern Hemisphere lake and river ice phenology from 1931-2005. The Cryosphere, 15(5), 2211-2234. https://doi.org/10.5194/tc-2020-172
Novikmec, M., Svitok, M., Kočický, D., Šporka, F., & Bitušík, P. (2013). Surface water temperature and ice cover of Tatra Mountains Lakes depend on altitude, topographic shading, and bathymetry. Arctic, Antarctic, and Alpine Research, 45(1), 77-87. https://doi.org/10.1657/1938-4246-45.1.77
Ohlendorf, C., Bigler, C., Goudsmit, G. H., Lemcke, G., Livingstone, D. M., Lottter, A. F., Müller, B., & Sturm, M. (2000). Causes and effects of long ice cover on a remote high Alpine Lake. Journal of Limnology, 5(S1), 65-80. https://doi.org/10.4081/jlimnol.2000.s1.65
Pawłowski, B. (2018). Changes in the course of ice phenomena on Morskie Oko in the Tatra Mountains from 1963 to 2012 and the implications for tourism. Limnological Review, 18(4), 167-173. https://doi.org/10.2478/limre-2018-0018
Pociask-Karteczka, & J., Choiński, A. (2012). Recent trends in ice cover duration for Lake Morskie Oko (Tatra Mountains, East-Central Europe). Hydrology Research, 43(4), 500-506. https://doi.org/10.2166/nh.2012.019
Preston, D. L., Caine, N., Mcknight, D. M., Williams, M. W., Hell, K., Miller, M. P., … & Johnson, P. T. J. (2016). Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophysical Research Letters, 43(10), 5353-5360. https://doi.org/10.1002/2016GL069036
Qi, M., Liu, S., Yao, X., Xie, F., & Gao, Y. (2020). Monitoring the ice phenology of Qinghai Lake from 1980 to 2018 Using multisource remote sensing data and Google Earth engine. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142217
Qi, M., Yao, X., Li, X., Duan, H., Gao, Y., & Liu, J. (2019). Spatiotemporal characteristics of Qinghai Lake ice phenology between 2000 and 2016. Journal of Geographical Sciences, 29, 115-130. https://doi.org/10.1007/s11442-019-1587-0
Sharma, S., Blagrave, K., Magnusson, J. J., O'Reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., … & Woolway, R. I. (2019). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9, 227- 231. https://doi.org/10.1038/s41558-018-0393-5
Sharma, S., Filazzola, A., Nguyen, T., Imrit, M. S., Blagrave, K., Bouffard, D., Daly, J., … & Magnuson, J. J. (2022). Long-term ice phenology records spanning up to 578 years for 78 lakes around the Northern Hemisphere. Scientific Data, 9(1), 318. https://doi.org/10.1038/s41597-022-01391-6
Sharma, S., Magnuson, J. J., Batt, R. D., Winslow, L. A., Korhonen, J., & Aono, Y. (2016). Direct observations of ice seasonality reveal changes in climate over the past 320-570 years. Scientific Reports, 6. https://doi.org/10.1038/srep25061
Sharma, S., Meyer, M. F., Culpepper, J., Yang, X., Hampton, S., Berger, S. A., … & Zhang, S. (2020). Integrating perspectives to understand lake ice dynamics in a changing world. Journal of Geophysical Research: Biogeosciences, 125(8). https://doi.org/10.1029/2020JG005799
Sharma, S., Richardson, D. C., Woolway, R. I., Imrit, M. A., Bouffard, D., Blagrave, K., Daly, J., … & Yao, H. (2021). Loss of Ice Cover, Shifting Phenology, and More Extreme Events in Northern Hemisphere Lakes. Journal of Geophysical Research: Biogeosciences, 126(10), 6348. https://doi.org/10.1029/2021JG006348
Siman, C., & Šinger, M. (2016). Vpád arktického vzduchu v úvode októbra. Slovak Hydrometeorological Institute. https://www.shmu.sk/sk/?page=2049&id=753
Solarski, M., Pradela, A., & Rzętała, M. (2011). Natural and Anthropogenic Influences on Ice Formation on Various Water Bodies of the Silesian Upland (Southern Poland). Limnological Review, 11(1), 33-44. https://doi.org/10.2478/v10194-011-0025-1
Solarski, M., & Rzętała, M. (2022). Determinants of Spatial Variability of Ice Thickness in Lakes in High Mountains of the Temperate Zone-The Case of the Tatra Mountains. Water, 14(15), 2360. https://doi.org/10.3390/w14152360
Solarski, M., & Szumny, M. (2020). Conditions of spatiotemporal variability of the thickness of the ice cover on lakes in the Tatra Mountains. Journal of Mountain Science, 17, 2369-2386. https://doi.org/10.1007/s11629-019-5907-8
Su, L., Che, T., & Dai, L. (2021). Variation in Ice Phenology of Large Lakes over the Northern Hemisphere Based on Passive Microwave Remote Sensing Data. Remote Sensing, 13(7), 1389. https://doi.org/10.3390/rs13071389
Sun, L., Wang, B., Ma, Y., Shi, X., & Wang, Y. (2023). Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau. Sensors, 23(3), 1661. https://doi.org/10.3390/s23031661
Šmejkalová, T., Edwards, M. E., & Dash, J. (2016). Arctic lakes show strong decadal trend in earlier spring ice-out. Scientific Reports, 6, 38449. https://doi.org/10.1038/srep38449
Šporka, F., Livingstone, D. M., Stuchlík, E., Turek, J., & Galas, J. (2006). Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia, 61(18), 77-90. https://doi.org/10.2478/s11756-006-0121-x
Thompson, R., Kamenik, C., & Schmidt, R. (2005). Ultra-sensitive Alpine lakes and climate change. Journal of Limnology, 64(2), 139-152. https://doi.org/10.4081/jlimnol.2005.139
Weyhenmeyer, G. A., Obertegger, U., Rudebeck, H., Jakobsson, E., Jansen, J., Zdorovennova, G., Bansal, S., … & Zdorovennov, R. (2022). Towards critical white ice conditions in lakes under global warming. Nature Communications, 13, 4974. https://doi.org/10.1038/s41467-022-32633-1
Weyhenmeyer, G. A., Westöö, A. K., & Willén, E. (2008). Increasingly ice-free winters and their effects on water quality in Sweden's largest lakes. Hydrobiologia, 199, 111-118. https://doi.org/10.1007/978-1-4020-8379-2_13
Williams, G., Layman, K. L., & Stefan, H. G. (2004). Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Regions Science Technology, 40(3), 145-164. https://doi.org/10.1016/j.coldregions.2004.06.010
Woolway, R. I., & Merchant, C. J. (2019). Worldwide alteration of lake mixing regimes in response to climate change. Nature Geoscience, 12, 271-276. https://doi.org/10.1038/s41561-019-0322-x
Yang, Q., Song, K., Wen, Z., Hao, X., & Fang, C. (2019). Recent trends of ice phenology for eight large lakes using MODIS products in Northeast China. International Journal of Remote Sensing, 40(14), 5388-5410. https://doi.org/10.1080/01431161.2019.1579939
Yao, H., Rusak, J. A., Paterson, A. M., Somers, K. M., Mackay, M., Girard, R., Ingram, R., & McConnell, C. (2013). The interplay of local and regional factors in generating temporal changes in the ice phenology of Dickie Lake, South-Central Ontario, Canada. Inland Waters, 3(1), 1-14. http://dx.doi.org/10.5268/IW-3.1.517
Zasadni, J., & Kłapyta, P. (2014). The Tatra Mountains during the Last Glacial Maximum. Journal of Maps, 10(3), 440-456. https://doi.org/10.1080/17445647.2014.885854
Zhang, X., Wang, K., & Kirillin, G. (2021). An Automatic Method to Detect Lake Ice Phenology Using MODIS Daily Temperature Imagery. Remote Sensing, 13(14), 2711. https://doi.org/10.3390/rs13142711
Žiak, M., & Długosz, M. (2015). Potencjalne lawiny. In Atlas Tatr - Przyroda nieożywiona. Zakopane: Tatrzanski Park Narodowy.
Żmudzka, E. (2011). Contemporary Climate Changes in the High Mountain Part of the Tatras. Miscellanea Geographica, 15(1), 93-102. https://doi.org/10.2478/v10288-012-0005-6
0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0293
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Licencja Creative Commons Uznanie autorstwa 4.0
Terms of use:Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -
Digitizing institution:Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
Original in: Projects co-financed by:Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R
Access: