Object structure
Title:

Adaptation to climate change at district level in the case of Budapest, Hungary

Subtitle:

Geographia Polonica Vol. 96 No. 2 (2023)

Creator:

Jäger, Bettina Szimonetta : Autor Affiliation ORCID ; Buzási, Attila : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2023

Description:

24 cm

Subject and Keywords:

climate change ; climate adaptation ; district scale ; Budapest ; Hungary

Abstract:

Hungary’s capital, Budapest is divided into 23 districts, which have significantly distinct topography: thus, having different level of vulnerability to certain climatic effects; in addition, their climate adaptation potential also varies. This study aimed to analyze the 23 districts of Budapest, Hungary, in terms of their climate adaptation consciousness from governmental perspective. The study compares the 23 districts through a scoring matrix with three main categories – attitude, planning, and implementation – and several criteria. In addition, interviews were organized with municipal employees with 43 questions following the structure of the scorin matrix, learning more about the districts’ commitment to climate adaptation.

References:

Aguiar, F. C., Bentz, J., Silva, J. M. N., Fonseca, A. L., Swart, R., Santos, F. D., & Penha-Lopes, G. (2018). Adaptation to climate change at local level in Europe: An overview. Environmental Science and Policy, 86, 38-63. https://doi.org/10.1016/j.envsci.2018.04.010 DOI
Araos, M., Berrang-Ford, L., Ford, J. D., Austin, S. E., Biesbroek, R., & Lesnikowski, A. (2016). Climate change adaptation planning in large cities: A systematic global assessment. Environmental Science and Policy, 66, 375-382. https://doi.org/10.1016/j.envsci.2016.06.009 DOI
Bai, X., Dawson, R. J., Ürge-Vorsatz, D., Delgado, G. C., Salisu Barau, A., Dhakal, S., … & Schultz, S. (2018, March 1). Six research priorities for cities and climate change. Nature, 555(7694), 23-25. https://doi.org/10.1038/d41586-018-02409-z DOI
Baker, I., Peterson, A., Brown, G., & McAlpine, C. (2012). Local government response to the impacts of climate change: An evaluation of local climate adaptation plans. Landscape and Urban Planning, 107(2), 127-136. https://doi.org/10.1016/j.landurbplan.2012.05.009 DOI
Baranyai, N., Varjú, V. (2017). A klímaváltozással kapcsolatos attitudök területi sajátosságai. Teruleti Statisztika, 57(2), 160-182. https://doi.org/10.15196/TS57020 DOI
Bartholy, J., Pongrácz, R., & Gelybó, G. Y. (2007). Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research, 5(1), 1-17. https://doi.org/10.15666/aeer/0501_001017 DOI
Biesbroek, G. R., Swart, R. J., Carter, T. R., Cowan, C., Henrichs, T., Mela, H., … & Rey, D. (2010). Europe adapts to climate change: Comparing National Adaptation Strategies. Global Environmental Change, 20(3), 440-450. https://doi.org/10.1016/j.gloenvcha.2010.03.005 DOI
Biró, K., & Szalmáné Csete, M. (2020). Corporate social responsibility in agribusiness: climate-related empirical findings from Hungary. Environment, Development and Sustainability, 23(4). https://doi.org/10.1007/s10668-020-00838-3 DOI
Budapest Climate Change Strategy (2018). Budapest Főváros Városépítési Tervező Kft. Budapest. https://budapest.hu/
Buzási, A. (2014). Will Budapest be a climate-resilient city? - Adaptation and mitigation challenges and opportunities in development plans of Budapest. European Journal of Sustainable Development, 3(4), 277-288. https://doi.org/10.14207/ejsd.2014.v3n4p277 DOI
Buzási, A. (2021). Climate vulnerability and adaptation challenges in szekszárd wine region, Hungary. Climate, 9(2), 1-17. https://doi.org/10.3390/cli9020025 DOI
Buzási, A. (2022). Comparative assessment of heatwave vulnerability factors for the districts of Budapest, Hungary. Urban Climate, 42. https://doi.org/10.1016/j.uclim.2022.101127 DOI
Carter, J. G., Cavan, G., Connelly, A., Guy, S., Handley, J., & Kazmierczak, A. (2015). Climate change and the city: Building capacity for urban adaptation. Progress in Planning, 95, 1-66. https://doi.org/10.1016/j.progress.2013.08.001 DOI
Csete, M., & Buzási, A. (2016). Managing local adaptation processes in Hungary. International Journal of Management Cases, 18(1), pp.13-22.
Csete, M. S., & Buzási, A. (2020). Hungarian regions and cities towards an adaptive future - Analysis of climate change strategies on different spatial levels. Időjárás/Quarterly Journal of the Hungarian Meteorological Service, 124(2), 253-276. https://doi.org/10.28974/idojaras.2020.2.6 DOI
Csete, M., & Horváth, L. (2012). Sustainability and green development in urban policies and strategies. Applied Ecology and Environmental Research, 10(2), 185-194. https://doi.org/10.15666/aeer/1002_185194 DOI
Csete, M., Pálvölgyi, T., & Szendrő, G. (2013). Assessment of climate change vulnerability of tourism in Hungary. Regional Environmental Change, 13(5), 1043-1057. https://doi.org/10.1007/s10113-013-0417-7 DOI
Csiszár, C., Csonka, B., Földes, D., Wirth, E., & Lovas, T. (2019). Urban public charging station locating method for electric vehicles based on land use approach. Journal of Transport Geography, 74, 173-180. https://doi.org/10.1016/j.jtrangeo.2018.11.016 DOI
Environmental and Energy Efficiency OP. Ec.europa.eu. (n.d.). https://ec.europa.eu/regional_policy/EN/atlas/programmes/2014-2020/hungary/2014hu16m1op001
European Environment Agency. (2012). EEA Report No 2/2012: Challenges and Opportunities for Cities Together with Supportive National and European Policies. https://www.eea.europa.eu/
Geneletti, D., & Zardo, L. (2016). Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. Land Use Policy, 50, 38-47. https://doi.org/10.1016/j.landusepol.2015.09.003 DOI
Hattermann, F. F., Wortmann, M., Liersch, S., Toumi, R., Sparks, N., Genillard, C., … & Drews, M. (2018). Simulation of flood hazard and risk in the Danube basin with the Future Danube Model. Climate Services, 12, 14-26. https://doi.org/10.1016/j.cliser.2018.07.001 DOI
Heidrich, O., Dawson, R. J., Reckien, D., & Walsh, C. L. (2013). Assessment of the climate preparedness of 30 urban areas in the UK. Climatic Change, 120(4), 771-784. https://doi.org/10.1007/s10584-013-0846-9 DOI
Heikkinen, M., Karimo, A., Klein, J., Juhola, S., & Ylä-Anttila, T. (2020). Transnational municipal networks and climate change adaptation: A study of 377 cities. Journal of Cleaner Production, 257. https://doi.org/10.1016/j.jclepro.2020.120474 DOI
Hungarian Meteorological Service (OMSZ). (2022). https://met.hu/
IPCC. (2022). Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (Eds.)]. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3-33) [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.)]. Cambridge, UK and New York, NY, USA: Cambridge University Press. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf DOI
Kovács, A., & Király, A. (2021). Assessment of climate change exposure of tourism in hungary using observations and regional climate model data. Hungarian Geographical Bulletin, 70(3), 215-231. https://doi.org/10.15201/hungeobull.70.3.2 DOI
Kovacs, E., Puskas, J., & Pozsgai, A. (2017). Positive effects of climate change on the field of sopron winegrowing region in Hungary. In T. Karacostas, A. Bais, P. Nastos, (Eds.) Perspectives on Atmospheric Sciences (pp. 607-613). Springer Atmospheric Sciences. Cham: Springer. https://doi.org/10.1007/978-3-319-35095-0_86 DOI
Li, S., Juhász-Horváth, L., Harrison, P. A., Pintér, L., & Rounsevell, M. D. A. (2017). Relating farmer's perceptions of climate change risk to adaptation behaviour in Hungary. Journal of Environmental Management, 185, 21-30. https://doi.org/10.1016/j.jenvman.2016.10.051 DOI
LIII of 1995 Act on the General Rules of Environmental Protection. (2022). https://www.ecolex.org/
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., … & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709. https://doi.org/10.1016/j.foreco.2009.09.023 DOI
Lioubimtseva, E., & da Cunha, C. (2020). Local climate change adaptation plans in the US and France: Comparison and lessons learned in 2007-2017. Urban Climate, 31. https://doi.org/10.1016/j.uclim.2019.100577 DOI
Massey, E., Biesbroek, R., Huitema, D., & Jordan, A. (2014). Climate policy innovation: The adoption and diffusion of adaptation policies across Europe. Global Environmental Change, 29, 434-443. https://doi.org/10.1016/j.gloenvcha.2014.09.002 DOI
Mesterházy, I., Mészáros, R., & Pongrácz, R. (2014). The effects of climate change on grape production in Hungary. Időjárás, 118(3), 193-206.
National Spatial Development and Spatial Planning Information System. Statistical dataset on district level. (2022). https://www.teir.hu
Németh, K., Czira, T., Sütő, A., Domjánné Nyizsalovszki, R., & Péter, E. (2020). Melegszik a helyzet? A klímaváltozás hatásai három hazai turisztikai desztináció példáján (Is the situation warming up? The effects of climate change shown by three Hungarian tourist destinations). Turizmus Bulletin, 20(4), 28-36. https://doi.org/10.14267/turbull.2020v20n5.3 DOI
Olazabal, M., & Ruiz De Gopegui, M. (2021). Adaptation planning in large cities is unlikely to be effective. Landscape and Urban Planning, 206. https://doi.org/10.1016/j.landurbplan.2020.103974 DOI
Otto, A., Kern, K., Haupt, W., Eckersley, P., & Thieken, A. H. (2021). Ranking local climate policy: Assessing the mitigation and adaptation activities of 104 German cities. Climatic Change, 167(1), 1-23. https://doi.org/10.1007/s10584-021-03142-9 DOI
Paldy, A., & Bobvos, J. (2010). Climate change and health - challenges for Hungary. Medycyna Środowiskowa = Environmental Medicine, 13(1), 19-29.
Pietrapertosa, F., Salvia, M., De Gregorio Hurtado, S., D'Alonzo, V., Church, J. M., Geneletti, D., … & Reckien, D. (2019). Urban climate change mitigation and adaptation planning: Are Italian cities ready? Cities, 91, 93-105. https://doi.org/10.1016/j.cities.2018.11.009 DOI
Pietrapertosa, F., Salvia, M., De Gregorio Hurtado, S., Geneletti, D., D'Alonzo, V., & Reckien, D. (2021). Multi-level climate change planning: An analysis of the Italian case. Journal of Environmental Management, 289. https://doi.org/10.1016/j.jenvman.2021.112469 DOI
Pongrácz, R., Bartholy, J., & Bartha, E. B. (2013). Analysis of projected changes in the occurrence of heat waves in Hungary. Advances in Geosciences, 35, 115-122. https://doi.org/10.5194/adgeo-35-115-2013 DOI
Preston, B. L., Westaway, R. M., & Yuen, E. J. (2011). Climate adaptation planning in practice: An evaluation of adaptation plans from three developed nations. Mitigation and Adaptation Strategies for Global Change, 16(4), 407-438. https://doi.org/10.1007/s11027-010-9270-x DOI
Reckien, D., Flacke, J., Dawson, R. J., Heidrich, O., Olazabal, M., Foley, A., … & Pietrapertosa, F. (2014). Climate change response in Europe: What's the reality? Analysis of adaptation and mitigation plans from 200 urban areas in 11 countries. Climatic Change, 122, 331-340. https://doi.org/10.1007/s10584-013-0989-8 DOI
Reckien, D., Flacke, J., Olazabal, M., & Heidrich, O. (2015). The influence of drivers and barriers on urban adaptation and mitigation plans-an empirical analysis of European Cities. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone.0135597 DOI
Reckien, D., Salvia, M., Heidrich, O., Church, J. M., Pietrapertosa, F., De Gregorio-Hurtado, S., … & Dawson, R. (2018). How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. Journal of Cleaner Production, 191, 207-219. https://doi.org/10.1016/j.jclepro.2018.03.220 DOI
SECAP Budapest. (2021). Budapest Főváros Városépítési Tervező Kft. Budapest. https://budapest.hu/
Second National Climate Change Strategy. (2018). https://nakfo.mbfsz.gov.hu/ (available only in Hungarian).
Smid, M., Russo, S., Costa, A. C., Granell, C., & Pebesma, E. (2019). Ranking European capitals by exposure to heat waves and cold waves. Urban Climate, 27, 388-402. https://doi.org/10.1016/j.uclim.2018.12.010 DOI
UN. (2015). World Urbanization Prospects - The 2014 Revision. New York, USA. https://www.population.un.org/
UN. (2018). World Urbanization Prospects - The 2018 Revision. New York, USA. https://www.population.un.org/
Ürge-Vorsatz, Di., Rosenzweig, C., Dawson, R. J., Sanchez Rodriguez, R., Bai, X., Barau, A. S., … & Dhakal, S. (2018). Locking in positive climate responses in cities. Nature Climate Change. Nature Publishing Group. https://doi.org/10.1038/s41558-018-0100-6 DOI
Uzzoli, A. (2016). Effects of climate change on health - a case study in Hungary. Gradus, 3(1), 284-289.
Uzzoli, A., & Bán, A. (2018). A hazai települési önkormányzatok adaptációs lehetőségei a klímaváltozás egészséghatásainak kezelésében (The adaptation options of Hungarian local governments in managing the health effects of climate change). In I. Fata, É. J. Gajzágó, B. Réger, J. Schuchmann (Eds.) Regionális folyamatok a változó világban és Magyarországon: Tanulmánykötet Enyedi György professzor emlékére (pp. 212-219). Budapest: Tomori Pál Főiskola.
Uzzoli, A., Szilágyi, D., & Bán, A. (2018). Climate vulnerability regarding heat waves - A case study in Hungary. DETUROPE: Uzzoli, A., Szilágyi, D., & Bán, A. (2018). Climate vulnerability regarding heat waves - A case study in Hungary. DETUROPE: Central European Journal of Tourism and Regional Development, 10(3), 53-69. https://doi.org/10.32725/det.2018.023 DOI
Yang, H., Lee, T., & Juhola, S. (2021). The old and the climate adaptation: Climate justice, risks, and urban adaptation plan. Sustainable Cities and Society, 67. https://doi.org/10.1016/j.scs.2021.102755 DOI

Relation:

Geographia Polonica

Volume:

96

Issue:

2

Start page:

221

End page:

237

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

doi:10.7163/GPol.0252 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0252

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: