Metadata language
Przegląd Geograficzny T. 94 z. 4 (2022)
Creator:Barszcz, Mariusz Paweł : Autor
Publisher: Place of publishing: Date issued/created: Description: Subject and Keywords:deszczomierz korytkowy ; disdrometr laserowy ; radar meteorologiczny ; hydrologia ; intensywność i suma opadu ; korelacja danych opadowych
Abstract:Prowadzone na stacji meteorologicznej SGGW w Warszawie w latach 2012‑2014 oraz 2019‑2020 pomiary opadów z wykorzystaniem deszczomierza korytkowego i disdrometru laserowego (Parsivel1) oraz dane pozyskane z radaru meteorologicznego w Legionowie pozwoliły na zgromadzenie danych umożliwiających ocenę przydatności disdrometru i radaru do szacowania opadów deszczu. Dane dla całego okresu badawczego posłużyły do analizy związku korelacyjnego między wysokościami opadu 24-godzinnego oszacowanymi na podstawie deszczomierza i disdrometru. Ze zbioru danych wybrano do dalszej analizy 21 pojedynczych zdarzeń, dla których dysponowano również danymi opadowymi oszacowanymi na podstawie radaru. Dane opadowe z disdrometru i radaru (obserwowane w rozdzielczości 1 min i 10 min), posłużyły do analizy związków korelacyjnych między nimi i adekwatnymi pomiarami z deszczomierza. Zakres pracy obejmował również porównanie wartości sum opadu oszacowanych dla pojedynczych zdarzeń z wykorzystaniem disdrometru i radaru z danymi z deszczomierza. Ostatni etap analiz obejmował korektę wysokości opadu oszacowanych na podstawie disdrometru przy zastosowaniu prostej metody, którą przedstawiono w pracy.
References:
Atencia, A., Mediero, L., Llasat, M.C., & Garrote, L. (2011). Effect of radar rainfall time resolution on the predictive capability of distributed hydrologic model. Hydrology and Earth System Sciences, 15, 3809‑3827.
Barszcz, M. (2018). Radar Data Analyses for a Single Rainfall Event and Their Application for Flow Simulation in an Urban Catchment Using the SWMM Model. Water, 10(8), 1‑18. https://doi/org/10.3390/w10081007
Barszcz, M. (2019). Quantitative rainfall analysis and flow simulation for an urban catchment using input from a weather radar. Geomatics, Natural Hazards and Risk, 10(1), 2129‑2144. https://doi/org/10.1080/19475705.2019.1682065
Berne, A., Delrieu, G., Creutin, J.-D., & Obled, C. (2004). Temporal and spatial resolution of rainfall measurements required for urban hydrology. Journal of Hydrology, 299(3‑4), 166‑179.
Biniak-Pieróg, M. (2017). Monitoring of atmospheric precipitation and soil moisture as basis for the estimation of effective supply of soil profile with water. Monografie 207. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego.
Biniak-Pieróg, M., Biel, G., Szulczewski, W., & Żyromski, A. (2015). Evaluation of methods of comparative analysis of sums of atmospheric precipitation measured with the classical method and with a contact-less laser rain gauge. Annals of Warsaw University of Life Sciences - SGGW Land Reclamation, 47, 371‑382. https://doi/org/10.1515/sggw-2015-0038
Burszta-Adamiak, E. (2012). Analysis of Stormwater Retention on Green Roofs/Badania Retencji Wód Opadowych Na Dachach Zielonych. Archives of Environmental Protection, 38, 3‑13. https://doi/org/10.2478/v10265-012-0035-3
Cha, J.W & Yum, S.S. (2021). Characteristics of precipitation particles measured by Parsivel disdrometer at a mountain and a coastal site in Korea. Asia-Pacific Journal of Atmospheric Sciences, 57, 261‑276. https://doi/org/10.1007/s13143-020-00190-6
Conti, F.L., Francipane, A., Pumo, D., & Noto, L.V. (2015). Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications. Journal of Hydrology, 531, 508‑522. https://doi/org/10.1016/j.jhydrol.2015.10.071
Delrieu, G., Bonnifait, L., Kirstetter, P.-E., & Boudevillain, B. (2014). Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological Sciences Journal, 59(7), 1308‑1319.
Giszterowicz, M., Ośródka, K., & Szturc, J. (2018). Nowcasting of rainfall based on extrapolation and evolution algorithms. Preliminary results. Acta Scientiarum Polonorum Formatio Circumiectus, 17(4), 59‑67. https://doi.org/10.15576/ASP.FC/2018.17.4.59
Jaffrain, J. & Berne. A. (2011). Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. Journal of Hydrometeorology, 12, 352‑370. https://doi/org/10.1175/2010JHM1244.1
Jakubiak, B., Licznar, P., & Malinowski, Sz.P. (2014). Rainfall estimates from radar vs. raingauge mea‑ surements. Warsaw case study. Environment Protection Engineering, 40(2), 159‑170. https://doi/org/10.5277/epel140212
Johannsen, L.L., Zambon, N., Strauss, P., Dostal, T., Neumann, M., Zumr, D., Cochrane, T.A., Blöschl,G., & Klik, A. (2020). Comparison of three types of laser optical disdrometers under natural rainfall conditions. Hydrological Sciences Journal, 65(4), 524‑535. https://doi/org/10.1080/02626667.2019.1709641
Jurczyk, A., Szturc, J., Otop, I., Ośródka, K., & Struzik, P. (2020). Quality-Based Combination of MultiSource Precipitation Data. Remote Sensing, 12, 1709. https://doi/org/10.3390/rs12111709
Krajewski, W.F., Kruger, A., Caracciolo, C., Golé, P., Barthes, L., Creutin, J-D., Delahaye, J-Y., Nikolopoulos, E.I., Ogden, F., & Vinson, J-P. (2006). DEVEX-Disdrometer Evaluation Experiment: Basic results and implications for hydrologic studies. Advances in Water Resources, 29, 311‑325. https://doi/org/10.1016/j.advwatres.2005.03.018
Krajewski, W.F. & Smith, J.A. (2002). Radar hydrology: rainfall estimation. Advances in Water Resources, 25, 1387‑1394.
Krajewski, W.F., Villarini, G., & Smith, A. (2010). Radar-rainfall uncertainties. Bulletin of the American Meteorological Society, 91, 87‑94.
Lanza, L., Leroy, M., Alexandropoulus, C., Stagi, L., & Wauben, W. (2005). WMO laboratory intercomparison of rainfall intensity gauges. Final report, IOM Report 84, WMO/TD 1304.
Licznar, P. (2009). Wstępne wyniki porównawczych testów polowych elektronicznego deszczomierza wagowego OTT Pluvio2 i disdrometru laserowego Parsivel. Instal, 7/8, 43‑50.
Licznar, P. (2018). Analiza opadów atmosferycznych na potrzeby projektowania systemów odwodnienia. Monografia 137. Wrocław: Polska Akademia Nauk, Komitet Inżynierii Środowiska.
Licznar, P., & Krajewski, W.F. (2016). Precipitation Type Specific Radar Reflectivity-rain Rate Relationship for Warsaw, Poland. Acta Geophysica, 64(5), 1840‑1857.
Licznar, P., Łomotowski, J., & Rojek, M. (2005). Methods of rainfall intensity measurement for the Leeds of Urban drainage systems' design and exploitation. Woda-Środowisko-Obszary Wiejskie, 5, 209‑2019.
Licznar, P., & Siekanowicz-Grochowina, K. (2015). Wykorzystanie disdrometru laserowego do kalibracji obrazów pochodzących z radarów opadowych na przykładzie Warszawy. Ochrona Środowiska, 37(2), 11‑16.
Löwe, R., Thorndahl, S., Mikkelsen, P.S., Rasmussen, M.R., & Madsen, H. (2014). Probabilistic online runoff forecasting for urban catchments using inputs from rain gauges as well as statically and dynamically adjusted weather radar. Journal of Hydrology, 512, 397‑407.
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885‑900. https://doi/org/10.13031/2013.23153
Moszkowicz, S., & Tuszyńska, I. (2006). Meteorologia radarowa. Podręcznik użytkownika informacji radarowej IMGW. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Niemi, T.J., Warsta, L., Taka, M., Hickman, B., Pulkkinen, S., Krebs, G., Moisseev, D.N., Koivusalo, H., & Kokkonen, T. (2017). Applicability of open rainfall data to event-scale urban rainfall-runoff modeling. Journal of Hydrology, 547, 143‑155. https://doi/org/10.1016/j.jhydrol.2017.01.056
Ośródka, K., Szturc, J., Jakubiak, B., & Jurczyk, A. (2014). Processing of 3D weather radar data with application for assimilation int He NWP model. Miscellanea Geographica - Regional Studies on Development, 18(3), 31‑39. https://doi/org/10.2478/mgrsd-2014-0023
Otop, I., Szturc, J., Ośródka, K., & Djaków, P. (2018). Automatic quality control of telemetric rain gauge data for operational applications at IMGW-PIB. ITM Web of Conference 23, 00028. https://doi/org/10.1051/itmconf/20182300028
Rafieeinasab, A., Norouzi, A., Kim, S., Habibi, H., Nazari, B., Seo, D.-J., Lee, H, Cosgrove, B., & Cui, Z. (2015). Toward high-resolution flash flood prediction in large urban areas - analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling. Journal of Hydrology, 531, 370‑388.
Somorowska, U. (2012). Annual and seasonal precipitation patterns across lowland catchment derived from rain gauge and weather radar data. Journal of Water and Land Development, 17(7‑12), 3‑10.
Szewrański, S. (2009). Rozbryzg jako forma erozji wodnej gleb lessowych. Monografie 78. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
Szturc, J., Jurczyk, A., Ośródka, K., Wyszogrodzki, A., & Giszterowicz, M. (2018). Precipitation estimation and nowcasting at IMGW-PIB (SEiNO system). Meteorology Hydrology and Water Management, 6(1), 3‑12. https://doi/org/10.26491/mhwm/76120
Tapiador, F.J., Navarro, A., Moreno, R., Jiménez-Alcázar, A., Marcos, C., Tokay, A., Durán, L., Bodoque, J.M., Martín, R., Petersen, W., & de Castro, M. (2017). On the optima measuring area for pointwise rainfall estimation: a dedicated experiment with 14 laser disdrometers. Journal of Hydrometeorology, 18(3), 753‑760. https://doi/org/10.1175/JHM-D-16-0127.1
Thorndahl, S., Einfalt, T., Willems, P., Nielsen, J.E., Veldhuis, M.-C., Arnbjerg-Nielsce, K., Rasmussen, M.R., & Molnar, P. (2017). Weather radar rainfall data in urban hydrology. Hydrology and Earth System Sciences, 21, 1359‑1380.
Tokay, A., Wolff, D.B., & Petersen, W.A. (2014). Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2 . Journal of Atmospheric and Oceanic Technology, 31, 1276‑1288. https://doi/org/10.1175/JTECH-D-13-00174.1
Tuszyńska, I. (2011). Charakterystyka produktów radarowych. Warszawa: Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy.
doi:10.7163/PrzG.2022.4.3 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2022.4.3
Source:CBGiOŚ. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Language: Language of abstract: Rights:Licencja Creative Commons Uznanie autorstwa 4.0
Terms of use:Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -
Digitizing institution:Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
Original in: Projects co-financed by:Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Access: