Metadata language
Relationships between sunshine duration and air temperature in Poland
Subtitle:Geographia Polonica Vol. 95 No. 3 (2022)
Creator:Matuszko, Dorota : Autor ; Bartoszek, Krzysztof : Autor ; Soroka, Jakub : Autor
Publisher: Place of publishing: Date issued/created: Description: Subject and Keywords:ocieplenie globalne ; zmiany klimatu ; czas nasłonecznienia ; temperatura powietrza ; trendy ; Polska
Abstract:The aim of the paper is to characterize the trends of sunshine duration (SDU) and air temperature in Poland, which may help understand the mechanism of contemporary climate change. The daily totals of SDU and daily data on air temperature from the years 1971-2020, from 25 synoptic stations in Poland are the basic source data. The series of records of the two variables showed that the points of change in the level of stabilization of the value of SDU and air temperature are close to each other, and confirm known in the literature “global dimming” and “global brightening” periods. The linear regression model confirmed that sunshine duration explains well the variability of, and increase in day-time air temperature in Poland in the warm part of the year.
References:
Bartoszek, K., Matuszko, D., & Soroka, J. (2020). Relationships between cloudiness, aerosol optical thickness, and sunshine duration in Poland. Atmospheric Research, 245. https://doi.org/10.1016/j.atmosres.2020.105097
Bartoszek, K., Matuszko, D., & Węglarczyk, S. (2021). Trends in sunshine duration in Poland (1971-2018). International Journal of Climatology, 41(1), 73-91. https://doi.org/10.1002/joc.6609
Brázdil, R., Flocas, A., & Sahsamanoglou, H. (1994). Fluctuation of sunshine duration in central and South-Eastern Europe. International Journal of Climatology, 14(9), 1017-1034. https://doi.org/10.1002/joc.3370140907
Copernicus Report. (2021). https://climate.copernicus.eu/esotc/2020
Dong, B., Sutton, R., & Woollings, T. (2013). The extreme European summer 2012. In Special Supplement to the Bulletin of the American Meteorological Society,, 94(9), 28-32.
Elvidge, A. D., & Renfrew, I. A. (2016). The causes of foehn warming in the lee of mountains. Bulletin of the American Meteorological Society, 97(3), 455-466. https://doi.org/10.1175/BAMS-D-14-00194.1
Forsythe, W. C., Rykiel, E. J. Jr, Randal, S., & Schoolfield, R. M. (1995). A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80(1), 87-95. https://doi.org/10.1016/0304-3800(94)00034-F
Hoy, A., Hänsel, S., Skalak, P., Ustrnul, Z., & Bochníček, O. (2016). The extreme European summer of 2015 in a long-term perspective. International Journal of Climatology, 37, 943-962. https://doi.org/10.1002/joc.4751
IMGW-PIB (2015). Instrukcja dla stacji meteorologicznych (Manual for meteorological stations).
IPCC (2021). In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. https://doi.org/10.3410/f.740620545.793587812
Kejna, M., & Rudzki, M. (2021). Spatial diversity of air temperature changes in Poland in 1961-2018. Theoretical and Applied Climatology, 143, 1361-1379. https:// doi.org/10.1007/s00704-020-03487-8
Kendall, M. G. (1975). Rank correlation measures. London: Charles Griffin.
Kossowska-Cezak, U., & Twardosz, R. (2019). Wielkoobszarowe anomalie termiczne w Europie (1951-2018). Kraków: IGiGP UJ.
Lorenc, H. (2006). Ocena jakości danych meteorologicznych po wprowadzeniu automatycznych przyrządów rejestrujących na sieci IMGW. Annales UMCS, 61(31), 256-266.
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U. … & Zerefos, C. (2016). European summer temperatures since Roman times. Environmental Research Letters, 11(2). https://doi.org/10.1088/1748-9326/11/2/024001
Marsz, A. A., Matuszko, D., & Styszyńska, A. (2022). The thermal state of the North Atlantic and macrocirculation conditions in the Atlantic-European sector, and changes in sunshine duration in Central Europe. International Journal of Climatology, 42(2), 748-761. https://doi.org/10.1002/joc.7270
Marsz, A. A., & Styszyńska, A. (2019). Skala i przyczyny zmian temperatury najcieplejszych miesięcy roku nad obszarem Polski po roku 1988. In Chojnacka-Ożga, L., & Lorenc, H. (Eds.) Współczesne problemy klimatu Polski (pp. 9-26). Warszawa: IMGW-PIB, Polskie Towarzystwo Geofizyczne.
Matuszko, D., Bartoszek, K., Soroka, J., & Węglarczyk, S. (2020). Sunshine duration in Poland from ground-and satellite-based data. International Journal of Climatology, 40(9), 4259-4271. https://doi.org/10.1002/joc.6460
Matuszko, D., Bartoszek, K., & Soroka, J. (2022). Long-term variability of cloud cover in Poland (1971-2020). Atmospheric Research, 268. https://doi.org/10.1016/j.atmosres.2022.106028
Montero-Martín, J., Antón, M., Vaquero-Martínez, J., & Sanchez-Lorenzo, A. (2020). Comparison of longterm solar radiation trends from CM SAF satellite products with ground-based data at the Iberian Peninsula for the period 1985-2015. Atmospheric Research, 236. https://doi.org/10.1016/j.atmosres.2019.104839
Norris, J. R., & Wild, M. (2007). Trends in aerosol radiative effects over Europe inferred from observed cloud cover solar "dimming" and solar "brightening". Journal of Geophysical Research, 112(D8), 1-13. https://doi.org/10.1029/2006JD007794
Nyamsi, W. W., Lipponen, A., Sanchez-Lorenzo, A., Wild, M., & Arola, A. (2020). A hybrid method for reconstructing the historical evolution of aerosol optical depth from sunshine duration measurements. Atmospheric Measurement Techniques, 13(6), 3061-3079. https://doi.org/10.5194/amt-13-3061-2020
Sanchez-Lorenzo, A. (2015). Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939-2012). Journal of Geophysical Research, 120(18), 9555-9569. https://doi.org/10.1002/2015jd023321
Sanchez-Lorenzo, A., Calbó, J., Brunetti, M., & Deser, C. (2009). Dimming/brightening over the Iberian Peninsula: Trends in sunshine duration and cloud cover and their relations with atmospheric circulation. Journal of Geophysical Research, 114(D10). https://doi.org/10.1029/2008JD011394
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379-1389. https://doi.org/10.2307/2285891
Sherwood, S. C., Bony, S., & Dufresne, J. L. (2014). Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 37-42. https://doi.org/10.1038/nature12829
Sinclair, V. A., Mikkola, J., Rantanen, M., & Räisänen, J. (2019). The summer 2018 heatwave in Finland. Weather, 74(11), 403-409. https://doi.org/10.1002/wea.3525
Sippel, S., Otto, F. E. L., Flach, M., & van Oldenborgh, G. J. (2016). The role of anthropogenic warming in 2015 Central European heat waves. Bulletin of the American Meteorological Society, 97(12), 51-56. https://doi.org/10.1175/BAMS-D-16-0150.1
Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G., & McKendry, I. G. (2006). Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 139(3-4), 224-236. https://doi.org/10.1016/j.agrformet.2006.07.004
Sutton, R. T., & Dong, B. (2012). Atlantic Ocean influence on a shift in European climate in the 1990s. Nature Geoscience, 5(11), 788-792. https://doi.org/10.1038/ngeo1595
Tomczyk, A. M., Bednorz, E., Półrolniczak, M., & Kolendowicz, L. (2019). Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology, 137(3-4), 1909-1923. https://doi.org/10.1007/s00704-018-2715-y
Twardosz, R. (2019). Anomalously warm months in 2018 in Poland in relation to circulation patterns. Weather, 74(11), 374-382. https://doi.org/10.1002/wea.3588
Ustrnul, Z., Wypych, A., Czekierda, D. (2021). Air temperature change. In Falarz, M. (Ed.) Climate change in Poland: Past, present and future. Cham, Switzerland: Springer, 275-330. https://doi.org/10.1007/978-3-030-70328-8_11
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., … & Wijffels, S. E. (2020). Heat stored in the Earth system: Where does the energy go? Earth System Science Data, 12, 2013-2041. https://doi.org/10.5194/essd-12-2013-2020
Wibig, J. (2021). Hot days and heat waves in Poland in the period 1951-2019 and the circulation factors favoring the most extreme of them. Atmosphere, 12(3), 340. https:// doi.org/10.3390/atmos12030340
WMO (2010). Guide to Meteorological Instruments and Methods of Observation, seventh edition, updated 2010, WMO - No.8 Geneva.
doi:10.7163/GPol.0236 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0236
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Licencja Creative Commons Uznanie autorstwa 4.0
Terms of use:Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -
Digitizing institution:Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk
Original in: Projects co-financed by:Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R
Access: