Object structure
Title:

How Covid-19 pandemic influenced air quality in Polish cities – lessons from three lockdowns

Subtitle:

Geographia Polonica Vol. 95 No. 3 (2022)

Creator:

Lindner-Cendrowska, Katarzyna : Autor Affiliation ORCID ; Leziak, Kamil : Autor Affiliation ORCID ; Bröde, Peter : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2022

Description:

24 cm

Subject and Keywords:

air polluion ; COVID-19 ; lockdown ; nitogen oxides ; carbon monoxide ; particulate matter

Abstract:

The aim of this study was to determine how COVID-19 pandemic influenced air quality in the chosen Polish cities. Data on nitrogen oxides, carbon monoxides, fine and coarse particulate matter concentrations from air quality monitoring stations was used to compare pollutants levels during the pandemic and in the 5-year pre-pandemic period. The impact of the pandemic on the air quality has been analysed using linear mixed effect models, adjusting for long-term, seasonal and weekly trends and meteorological conditions. Results showed that during the pandemic, until the second lockdown only nitrogen oxides levels were significantly reduced (up to 20%), while when again loosening restrictions the rebound effect led to 20-30% increase of all analysed pollutants.

References:

Adam, M. G., Tran, P. T. M., & Balasubramanian, R. (2021). Air quality changes in cities during the COVID-19 lockdown: A critical review. Atmospheric Research, 264. https://doi.org/10.1016/j.atmosres.2021.105823 DOI
Baldasano, J. M. (2020). COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Science of The Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140353 DOI
Berman, J. D., & Ebisu, K. (2020). Changes in U.S. air pollution during the COVID-19 pandemic. Science of the Total Environment, 739. https://doi.org/10.1016/j.scitotenv.2020.139864 DOI
Bolaño-Ortiz, T. R., Pascual-Flores, R. M., Puliafito, S. E., Camargo-Caicedo, Y., Berná-Peña, L. L., Ruggeri, M. F., Lopez-Noreña, A. I., Tames, M. F., & Cereceda-Balic, F. (2020). Spread of covid-19, meteorological conditions and air quality in the city of buenos aires, argentina: Two facets observed during its pandemic lockdown. Atmosphere, 11(10). https://doi.org/10.3390/atmos11101045 DOI
Brimblecombe, P., & Lai, Y. (2020). Effect of sub-urban scale lockdown on air pollution in Beijing. Urban Climate, 34. https://doi.org/10.1016/j.uclim.2020.100725
Briz-Redón, Á., Belenguer-Sapiña, C., & Serrano-Aroca, Á. (2021). Changes in air pollution during COVID-19 lockdown in Spain: A multi-city study. Journal of Environmental Sciences (China), 101, 16-26. https://doi.org/10.1016/j.jes.2020.07.029 DOI
Cameletti, M. (2020). The effect of corona virus lockdown on air pollution: Evidence from the city of Brescia in Lombardia region (Italy). Atmospheric Environment, 239. https://doi.org/10.1016/j.atmosenv.2020.117794 DOI
CDC. (2021). CDC Museum COVID-19 Timeline. https://www.cdc.gov/museum/timeline/covid19.html
Chen, A. L. W., Chien, L. C., Li, Y., & Lin, G. (2020). Nonuniform impacts of COVID-19 lockdown on air quality over the United States. Science of The Total Environment, 745. https://doi.org/10.1016/J.SCITOTENV.2020.141105 DOI
Chen, Z., Hao, X., Zhang, X., & Chen, F. (2021). Have traffic restrictions improved air quality? A shock from COVID-19. Journal of Cleaner Production, 279. https://doi.org/10.1016/J.JCLEPRO.2020.123622 DOI
Chief Sanitary Inspectorate. (2021). Stan sanitarny kraju w 2020 roku. https://www.gov.pl/web/gis
Cichowicz, R., Wielgosiński, G., & Fetter, W. (2017). Dispersion of atmospheric air pollution in summer and winter season. Environmental Monitoring and Assessment, 189(12), 605. https://doi.org/10.1007/s10661-017-6319-2 DOI
Cole, M. A., Robert, ·, Elliott, J. R., & Liu, · Bowen. (2020). The impact of the Wuhan Covid-19 lockdown on air pollution and health: A machine learning and augmented synthetic control approach. Environmental and Resource Economics, 76, 553-580. https://doi.org/10.1007/s10640-020-00483-4 DOI
Collivignarelli, M. C., Abbà, A., Bertanza, G., Pedrazzani, R., Ricciardi, P., & Carnevale Miino, M. (2020). Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Science of the Total Environment, 732. https://doi.org/10.1016/j.scitotenv.2020.139280 DOI
Connerton, P., Vicente de Assunção, J., Maura de Miranda, R., Dorothée Slovic, A., José Pérez-Martínez, P., & Ribeiro, H. (2020). Air quality during COVID-19 in four megacities: Lessons and challenges for public health. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 14). https://doi.org/10.3390/ijerph17145067 DOI
Dabbour, L., Abdelhafez, E., & Hamdan, M. (2021). Effect of climatology parameters on air pollution during COVID-19 pandemic in Jordan. Environmental Research, 202. https://doi.org/https://doi.org/10.1016/j.envres.2021.111742 DOI
Dantas, G., Siciliano, B., França, B. B., da Silva, C. M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Science of The Total Environment, 729. https://doi.org/10.1016/j.scitotenv.2020.139085 DOI
Dong, L., Chen, B., Huang, Y., Song, Z., & Yang, T. (2021). Analysis on the characteristics of air pollution in China during the COVID-19 outbreak. Atmosphere, 12, 205. https://doi.org/10.3390/atmos12020205 DOI
Dutheil, F., Baker, J. S., & Navel, V. (2020). COVID-19 as a factor influencing air pollution? Environmental Pollution, 263. https://doi.org/10.1016/j.envpol.2020.114466 DOI
ECMWF. (2021). ERA5: How to calculate wind speed and wind direction from u and v components of the wind? https://confluence.ecmwf.int/pages/viewpage.action?pageId=133262398
El-Sayed, M. M. H., Elshorbany, Y. F., & Koehler, K. (2021). On the impact of the COVID-19 pandemic on air quality in Florida. Environmental Pollution, 285. https://doi.org/10.1016/j.envpol.2021.117451 DOI
Filonchyk, M., Hurynovich, V., & Yan, H. (2021). Impact of {COVID}-19 Pandemic on Air Pollution in Poland Based on Surface Measurements and Satellite Data. Aerosol and Air Quality Research, 21(7). https://doi.org/10.4209/aaqr.200472
Filonchyk, M., Hurynovich, V., & Yan, H. (2021). Impact of Covid-19 lockdown on air quality in the Poland, Eastern Europe. Environmental Research, 198. https://doi.org/10.1016/J.ENVRES.2020.110454
Fu, F., Purvis-Roberts, K. L., & Williams, B. (2020). Impact of the covid-19 pandemic lockdown on air pollution in 20 major cities around the world. Atmosphere, 11(11). https://doi.org/10.3390/atmos11111189 DOI
Gao, C., Li, S., Liu, M., Zhang, F., Achal, V., Tu, Y., Zhang, S., & Cai, C. (2021). Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. Science of the Total Environment, 773. https://doi.org/10.1016/j.scitotenv.2021.145545 DOI
Gautam, S. (2020). COVID-19: air pollution remains low as people stay at home. Air Quality, Atmosphere and Health, 13(7), 853-857. https://doi.org/10.1007/s11869-020-00842-6 DOI
Ginzburg, A. S., Semenov, V. A., Semutnikova, E. G., Aleshina, M. A., Zakharova, P. V., & Lezina, E. A. (2020). Impact of COVID-19 Lockdown on Air Quality in Moscow. Doklady Earth Sciences, 495(1), 862-866. https://doi.org/10.1134/S1028334X20110069 DOI
Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C., McDonald, B. C., Peischl, J., Petzold, A., Thompson, C. R., & Kiendler-Scharr, A. (2021). The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations. Elementa: Science of the Anthropocene, 9(1). https://doi.org/10.1525/elementa.2021.00176 DOI
Grzybowski, P. T., Markowicz, K. M., & Musiał, J. P. (2021). Reduction of air pollution in Poland in spring 2020 during the lockdown caused by the covid-19 pandemic. Remote Sensing, 13(18). https://doi.org/10.3390/rs13183784 DOI
Hammer, M. S., Donkelaar, A. Van, Martin, R. V., McDuffie, E. E., Lyapustin, A., Sayer, A. M., Hsu, N. C., Levy, R. C., Garay, M. J., Kalashnikova, O. V., & Kahn, R. A. (2021). Effects of COVID-19 lockdowns on fine particulate matter concentrations. Science Advances, 7(26). https://doi.org/10.1126/SCIADV.ABG7670 DOI
Higham, J. E., Ramírez, C. A., Green, M. A., & Morse, A. P. (2021). UK COVID-19 lockdown: 100 days of air pollution reduction? Air Quality, Atmosphere and Health, 14(3), 325-332. https://doi.org/10.1007/s11869-020-00937-0 DOI
Jędruszkiewicz, J., Czernecki, B., & Marosz, M. (2017). The variability of PM10 and PM2.5 concentrations in selected Polish agglomerations: the role of meteorological conditions, 2006-2016. International Journal of Environmental Health Research, 27(6), 441-462. https://doi.org/10.1080/09603123.2017.1379055 DOI
Jephcote, C., Hansell, A. L., Adams, K., & Gulliver, J. (2021). Changes in air quality during COVID-19 'lockdown' in the United Kingdom. Environmental Pollution, 272, 116011. https://doi.org/10.1016/J.ENVPOL.2020.116011 DOI
Jia, C., Fu, X., Bartelli, D., & Smith, L. (2020). Insignificant impact of the "stay-at-home" order on ambient air quality in the Memphis metropolitan area, U.S.A. Atmosphere, 11(6), 630. https://doi.org/10.3390/atmos11060630 DOI
Kalbarczyk, R., & Kalbarczyk, E. (2020). Meteorological conditions of the winter-time distribution of nitrogen oxides in Poznań: A proposal for a catalog of the pollutants variation. Urban Climate, 33. https://doi.org/10.1016/j.uclim.2020.100649 DOI
Kamińska, J. A. (2019). A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Science of The Total Environment, 651, 475-483. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.09.196 DOI
Keikhosravi, G., & Fadavi, S. F. (2021). Impact of the inversion and air pollution on the number of patients with Covid-19 in the metropolitan city of Tehran, 37. https://doi.org/10.1016/j.uclim.2021.100867 DOI
Kerimray, A., Baimatova, N., Ibragimova, O. P., Bukenov, B., Kenessov, B., Plotitsyn, P., & Karaca, F. (2020). Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Science of the Total Environment, 730. https://doi.org/10.1016/j.scitotenv.2020.139179 DOI
Kumari, P., & Toshniwal, D. (2020). Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Climate, 34. https://doi.org/10.1016/j.uclim.2020.100719 DOI
Lenth, R. V. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.1-1. https://cran.r-project.org/package=emmeans
Liu, F., Wang, M., & Zheng, M. (2021). Effects of COVID-19 lockdown on global air quality and health. Science of the Total Environment, 755. https://doi.org/10.1016/j.scitotenv.2020.142533 DOI
Marinello, S., Butturi, M. A., & Gamberini, R. (2021). How changes in human activities during the lockdown impacted air quality parameters: A review. Environmental Progress and Sustainable Energy, 40(4). https://doi.org/10.1002/ep.13672 DOI
Menut, L., Bessagnet, B., Siour, G., Mailler, S., Pennel, R., & Cholakian, A. (2020). Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Science of The Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140426 DOI
Ministry of Health. (2020). Pierwszy przypadek koronawirusa w Polsce. https://www.gov.pl/web/zdrowie/pierwszy-przypadek-koronawirusa-w-polsce
Moreda-Piñeiro, J., Sánchez-Piñero, J., Fernández-Amado, M., Costa-Tomé, P., Gallego-Fernández, N., Piñeiro-Iglesias, M., López-Mahía, P., & Muniategui-Lorenzo, S. (2021). Evolution of gaseous and particulate pollutants in the air: What changed after five lockdown weeks at a southwest atlantic european region (northwest of spain) due to the sars-cov-2 pandemic? Atmosphere, 12(5). https://doi.org/10.3390/atmos12050562 DOI
Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S). Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac DOI
Nidzgorska-Lencewicz, J., & Czarnecka, M. (2015). Winter weather conditions vs. air quality in Tricity, Poland. Theoretical and Applied Climatology, 119(3), 611-627. https://doi.org/10.1007/s00704-014-1129-8 DOI
Onyeaka, H., Anumudu, C. K., Al-Sharify, Z. T., Egele-Godswill, E., & Mbaegbu, P. (2021). COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. Science Progress, 104(2). https://doi.org/10.1177/00368504211019854 DOI
Parr, S., Wolshon, B., Renne, J., Murray-Tuite, P., & Kim, K. (2020). Traffic impacts of the COVID-19 pandemic: Statewide analysis of social separation and activity restriction. Natural Hazards Review, 21(3). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000409 DOI
Piccoli, A., Agresti, V., Balzarini, A., Bedogni, M., Bonanno, R., Collino, E., Colzi, F., Lacavalla, M., Lanzani, G., Pirovano, G., Riva, F., Riva, G. M., & Toppetti, A. M. (2020). Modeling the effect of COVID-19 lockdown on mobility and NO2 concentration in the lombardy region. Atmosphere, 11(12), 1-18. https://doi.org/10.3390/atmos11121319 DOI
Pinheiro, J., & Bates, D. (2000). Mixed-Effects Models in S and S-PLUS. Statistics and Computing. Springer. DOI
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-152. https://cran.r-project.org/package=nlme
Polednik, B. (2021). Air quality changes in a Central European city during COVID-19 lockdown. Sustainable Cities and Society, 73. https://doi.org/10.1016/j.scs.2021.103096 DOI
R Core Team. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
Reizer, M., & Juda-Rezler, K. (2016). Explaining the high PM10 concentrations observed in Polish urban areas. Air Quality, Atmosphere & Health, 9(5), 517-531. https://doi.org/10.1007/s11869-015-0358-z DOI
Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2020). Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115042 DOI
Rogulski, M., & Badyda, A. (2021). Air Pollution Observations in Selected Locations in Poland during the Lockdown Related to COVID-19. Atmosphere, 12(7), 806. https://doi.org/10.3390/atmos12070806 DOI
Ropkins, K., & Tate, J. E. (2021). Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Science of the Total Environment, 754. https://doi.org/10.1016/j.scitotenv.2020.142374 DOI
Rossi, R., Ceccato, R., & Gastaldi, M. (2020). Effect of road traffic on air pollution. Experimental evidence from covid-19 lockdown. Sustainability (Switzerland), 12(21), 1-17. https://doi.org/10.3390/su12218984 DOI
Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, 728. https://doi.org/10.1016/j.scitotenv.2020.138878 DOI
Sicard, P., De Marco, A., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, J. J. D., & Calatayud, V. (2020). Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment, 735. https://doi.org/10.1016/j.scitotenv.2020.139542 DOI
Silver, B., He, X., Arnold, S. R., & Spracklen, D. V. (2020). The impact of COVID-19 control measures on air quality in China. Environmental Research Letters, 15(8). https://doi.org/10.1088/1748-9326/ABA3A2 DOI
Singh, R. P., & Chauhan, A. (2020). Impact of lockdown on air quality in India during COVID-19 pandemic. Air Quality, Atmosphere & Health, 13(8), 921-928. https://doi.org/10.1007/s11869-020-00863-1 DOI
Skirienė, A. F., & Stasiškienė, Ž. (2021). COVID-19 and air pollution: Measuring pandemic impact to air quality in five European countries. Atmosphere, 12(3). https://doi.org/10.3390/atmos12030290 DOI
Solberg, S., Walker, S.-E., Schneider, P., & Guerreiro, C. (2021). Quantifying the impact of the Covid-19 lockdown measures on nitrogen dioxide levels throughout Europe. In Atmosphere (Vol. 12, Issue 2). https://doi.org/10.3390/atmos12020131 DOI
Statistics Poland. (2020). Poland's government agency. https://bdl.stat.gov.pl/BDL/start
Tadano, Y. S., Potgieter-Vermaak, S., Kachba, Y. R., Chiroli, D. M. G., Casacio, L., Santos-Silva, J. C., Moreira, C. A. B., Machado, V., Alves, T. A., Siqueira, H., & Godoi, R. H. M. (2021). Dynamic model to predict the association between air quality, COVID-19 cases, and level of lockdown. Environmental Pollution, 268. https://doi.org/10.1016/J.ENVPOL.2020.115920 DOI
USDT. (2010). Public Transportation's Role in Responding to Climate Change. https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/PublicTransportationsRoleInRespondingToClimateChange2010.pdf
Varga-Balogh, A., Leelőssy, Á., & Mészáros, R. (2021). Effects of covid-induced mobility restrictions and weather conditions on air quality in Hungary. Atmosphere, 12(5), 561. https://doi.org/10.3390/atmos12050561 DOI
Venter, Z. S., Aunan, K., Chowdhury, S., & Lelieveld, J. (2020). COVID-19 lockdowns cause global air pollution declines. Proceedings of the National Academy of Sciences of the United States of America, 117(32), 18984-18990. https://doi.org/10.1073/PNAS.2006853117 DOI
Wang, P., Chen, K., Zhu, S., Wang, P., & Zhang, H. (2020). Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resources, Conservation and Recycling, 158. https://doi.org/10.1016/j.resconrec.2020.104814 DOI
Warsaw Municipal Roads Management. (2021). Little Traffic on the Roads (in Polish). https://zdm.waw.pl/aktualnosci/maly-ruch-na-drogach/
Website of the Republic of Poland. (2021). Coronavirus: information and recommendations. https://www.gov.pl/web/coronavirus/
Werner, P. A., Skrynyk, O., Porczek, M., Szczepankowska-Bednarek, U., Olszewski, R., & Kęsik-Brodacka, M. (2021). The effects of climate and Bioclimate on COVID-19 Cases in Poland. Remote Sensing, 13(23). https://doi.org/10.3390/rs13234946 DOI
Wyche, K. P., Nichols, M., Parfitt, H., Beckett, P., Gregg, D. J., Smallbone, K. L., & Monks, P. S. (2021). Changes in ambient air quality and atmospheric composition and reactivity in the South East of the UK as a result of the COVID-19 lockdown. Science of the Total Environment, 755. https://doi.org/10.1016/j.scitotenv.2020.142526 DOI
Xu, Y., Zhu, B., Shi, S., & Huang, Y. (2019). Two inversion layers and their impacts on PM2.5 concentration over the Yangtze River Delta, China. Journal of Applied Meteorology and Climatology, 58(11), 2349-2362. https://doi.org/10.1175/JAMC-D-19-0008.1 DOI
You, Y., Byrne, B., Colebatch, O., Mittermeier, R. L., Vogel, F., & Strong, K. (2021). Quantifying the impact of the covid-19 pandemic restrictions on CO, CO2 , and CH4 in downtown toronto using open-path fourier transform spectroscopy. Atmosphere, 12(7). https://doi.org/10.3390/atmos12070848 DOI
Zangari, S., Hill, D. T., Charette, A. T., & Mirowsky, J. E. (2020). Air quality changes in New York City during the COVID-19 pandemic. Science of The Total Environment, 742, 140496. https://doi.org/10.1016/J.SCITOTENV.2020.140496 DOI
Zhu, Z., Qiao, Y., Liu, · Qunyue, Lin, C., Dang, E., Fu, W., Wang, G., & Dong, J. (2021). The impact of meteorological conditions on Air Quality Index under different urbanization gradients: A case from Taipei. Environment, Development and Sustainability, 23, 3994-4010. https://doi.org/10.1007/s10668-020-00753-7 DOI

Relation:

Geographia Polonica

Volume:

95

Issue:

3

Start page:

255

End page:

274

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

doi:10.7163/GPol.0235 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0235

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: