Object structure
Title:

Podłoże, przyczyny i znaczenie zmienności morfologicznej organizmów planktonowych

Subtitle:

Zmienność morfologiczna organizmów planktonowych ; Origins, causes and significance of morphological variability of planktonic organisms

Creator:

Pijanowska, Joanna

Contributor:

Polska Akademia Nauk. Komitet Ekologiczny

Publisher:

Państwowe Wydawnictwo Naukowe

Place of publishing:

Warszawa

Date issued/created:

1980

Description:

Pages 3-23 ; 24 cm ; Bibliographical references (pages 18-23) ; Abstract in English

Type of object:

Journal/Article

Subject and Keywords:

plankton ; morphology ; variability ; polymorphism (zoology)

Abstract:

This is a review of concepts and hypotheses on morphological variability of planktonic organisms, since Lauterborn’s (1901) paper up to the most recent ones (1977—1978). Planktonic organisms are variable in size, shape and proportions of body, both in time and space. Phenomena of morphological variability are common among planktonic algae (mainly Bacillariophyceae and Dinophyceae), protozoans (Lobosa), rotifers (mainly Brachionidae) and crustaceans (Cladocera and to a lesser extent Copepoda). Apart from size and proportions of body the crustaceans vary in shape and height of head, length of I and II pair antennae, mucro and tail spine length, and as for algae, rotifers and crustaceans occurrence of all kinds of exuberances and spines (Fig. 2). Phenomena of morphological variability are basically controlled by three types of factors: (1) genetic factors decide about the potential ability to form various morphotypes, (2) environmental factors give an impulse for manifestation of a genetically conditioned character, whereas (3) selection keeps up this diversity. Seasonal morphological variability may be either due to plasticity of genotypes in relation to environmental changes, or phenotypic cycles may be caused by seasonal changes in relative frequencies of genetically differing clones. Spatial variability may be due to genetic differences among parthogenetic clones or to differences in abilities of one genotype to produce morphologically different phenotypes under varying conditions (Fig. 1). Thus potential abilities of individuals of one species to form different morphotypes are conditioned by factors of a genetic character, but the realization of these theoretical abilities depends on environmental factors. Among environmental factors which may cause morphological variability of planktonic organisms the most frequently mentioned are: temperature, water mixing, light, concentration and kind of food, presence of predators which by organic substances excreted into the environment may stimulate some morphological changes of their potential prey. It can not be said for sure which of these factors are directly responsible for this variability, which indirectly — by changes in their intensity imply changes of factors directly responsible for variability, and which inform only about the intensity of factors decisive for variability. ; Variability, to put it more precisely, the genetic information responsible for it, would not be maintained by generations, if it would not have any or only slight functional significance. The possible significance of structural modifications allowing to exist at suitable water depths is discussed. All changes, based on an increase or reduction of some parts of the body in relation to others increase the resistance of the body, and they may counteract the rotational motion of organism, help to move horizontally and to face water currents. Morphological variability is also of undisputable importance for the reduction of mortality due to predation. Selection favours individuals (clones) which, because of a determined size, shape, colour or presence of specific structures, are more resistant to be caught by predatory invertebrates and vertebrates (Figs. 3 and 4). Selection, by favouring individuals of modified shape, could result after some time in the formation of a uniform population as regards a given genotype. But constant frequency of genes in a population (Fig. 5) can be maintained either by selection, changing its direction during the year, or by negative feedback, i.e. when at too high genotype frequency its chances for survival decrease, and it becomes unfavourable even under constant environmental conditions. Therefore in order to maintain constant frequency of genes in a population, a reverse correlation should take place between the frequency of a genotype and its adaptive value. Polymorphism of planktonic organisms is a result of maintaining the specific genetic constitution which allows them to function in a broad spectrum oi variability of environmental factors and allows many of them the common occurrence.

References:

Allan D. 1973 — Competition and the relative abundances of two cladocerans — Ecology, 54: 484—498.
Beauchamp P. de 1928 — Coup d’oeil sur les recherches recentes relatives aux Rotiferes et sur les methodes qui leur sont applicables — Bull. biol. 62: 51—125.
Beauchamp P. de 1952a — Un facteur de la variabilite chez les Rotiferes du genre Brachionus — C. r. hebd. Acad. Sci. Paris, 234: 573—575.
Beauchamp P. de 1952b — Variation chez les Rotiferes du genre Brachionus — Compt. Rend. Acad. Sci. Paris, 235: 1355—1356.
Birky C. W. jr 1964 — Studies on the physiology and genetics of the rotifer Asplanchna. I. Methods and physiology — J. exp. Zool. 155: 273—288.
Birky C. W. jr 1969 — The developmental genetics of polymorphism in the rotifer Asplanchna. III. Quantitative modification of developmental responses to vitamin E by the genoma, physiological state, and populations density of responding females — J. exp. Zool. 170: 437—448.
Bowkiewicz J. 1929 — Schwebephase in der Bewegung der Cladoceren und Viskositat des Wassers — Int. Rev. ges. Hydrobiol. Hydrogr. 22: 146—156.
Brooks J. L. 1947 — Turbulence as an environmental determinant of relative growth in Daphnia — Proc. natn. Acad. Sci. U.S.A. 33: 141—148.
Brooks J. L. 1957a — The species problem in freshwater animals — (W: The species problem. Red. E. Mayr) — AAAS Publ. 50: 81—109.
Brooks J. L. 1957b — The systematics of North American Daphnia — Mem. Conn. Acad. Arts Sci. 13: 1—180.
Brooks J. L. 1965 — Predation and relative helmet size in cyclomorphic Daphnia — Proc. Natn. Acad. Sci. U.S.A. 53: 119—126.
Brooks J. L., Dodson S. J. 1965 — Predation, body size and composition of plankton — Science, N.Y. 150: 28—35.
Brooks J. L., Hutchinson G. E. 1950 — On the rate of passive sinking of Daphnia — Proc. Natn. Acad. Sci. U.S.A. 36: 272—277.
Buchner H., Mulzer F., Rauh F. 1957 — Untersuchungen uber die Variabilitat der Radertiere. I. Problemstellung und vorlaufige Mitteilung fiber die Ergebnisse — Biol. Zbl. 76: 289—315.
Carlin B. 1943 — Die Planktonrotatorien des Motalastrom: zur Taxonomie und Okologie der Planktonrotatorien — Meddn Lunds Univ. limnol. Instn 5: 255—255.
Coker R. E. 1933 — Influence of temperature on size of freshwater copepods (Cyclops) — Int. Revue ges. Hydrobiol. Hydrogr. 29: 406—436.
Coker R. E. 1939 — The problem of cyclomorphosis in Daphnia — Q. Rev. Biol. 14: 137—148.
Coker R. E., Addlestone H. H. 1938 — Influence of temperature on cyclomorphosis in Daphnia longispina — J. Elisha Mitchell scient. Soc. 54: 45—75.
Dieffenbach H., Sachse R. 1911 — Biologische Untersuchungen an Radertieren in Teichgewassern — Int. Revue ges. Hydrobiol. Hydrogr., Biol. Suppl. 3: 1—93.
Dobzhansky Th. 1951 — Genetics and the origin of species — Columbia Univ. Press, New York.
Dodson S. J. 1974 — Adaptive change in plankton morphology in response to size — selective predation: A new hypothesis of cyclomorphosis — Limnol. Oceanogr. 19: 721—729.
Egloff D. A. 1968 — The relative growth and seasonal variation of several cyclomorphic structures of Daphnia catawba Coker in natural populations — Arch. Hydrobiol. 65: 325—359.
Entz G. 1927 — Beitrage zur Kenntnis der Peridineen II. resp. VII. Studien an Susswasser — Ceratien — Arch. Protistenk. 58: 344—440.
Erman L. A. 1962 — Ciklomorfoz i pitanie planktonnych kolovratok — Zoul. 2. 41: 998—1003.
Ford E. B. 1940 — Polymorphism and taxonomy (W: The new systematics. Red. J. Huxley) — Clarendon Press, Oxford, 493—513.
Ford E. B. 1965 — Genetic polymorphism — M. T. T. Press, Cambridge, Mass.
Fritz F. 1935 — fiber die Sinkgeschwindigkeit einiger Phytoplanktonorganismen — Int. Revue ges. Hydrobiol. Hydrogr. 32: 424—431.
Gallagher J. J. 1957 — Cyclomorphosis in the rotifer Keratella cochlearis (Gosse) — Trans. Am. microsc. Soc. 76: 197—203.
Gilbert J. J. 1966 — Rotifer ecology and embryological induction — Science N. Y. 151: 1234—1237.
Gilbert J. J. 1967 — Asplanchna and posterolateral spine production in Brachionus calyciflorus — Arch. Hydrobiol. 64: 1—62.
Gilbert J. J. 1973 — The induction and ecological significance of gigantism in the rotifer Asplanchna sieboldi — Science, N. Y. 181: 63—66.
Gilbert J. J. 1975 — Polymorphism and sexuality in the rotifer Asplanchna, with special reference to the effects of prey-type and clonal variation — Archr Hydrobiol. 75: 442—483.
Gilbert J. J. 1977 — Effect of the non-tocopherol component of the diet on polymorphism, sexuality, biomass, and reproductive rate of the rotifer Asplanchna sieboldi — Arch. Hydrobiol. 80: 375—397.
Gilbert J. J. 1978 — Selective feeding and its effect on polymorphism and sexuality in the rotifer Asplanchna sieboldi — Freshw. Biol. 8: 43—50.
Gilbert J. J., Birky C. W. jr 1971 — Sensitivity and specifity of the Asplanchna response to dietary a-tocopherol — J. Nutr. 101: 113—126.
Gilbert J. J., Thompson G. A. jr 1968 — a-tocopherol control of sexuality and polymorphism in the rotifer Asplanchna — Science, N. Y. 159: 734—736.
Gilbert J. J., Waage J. K. 1967 — Asplanchna, Asplanchna — substance and postero-lateral spine lenght variation of the rotifer Brachionus calyciflorus in a natural environment — Ecology, 48: 1027—1031.
Green J. 1960 — Zooplankton of the River Sokoto. The Rotifera — Proc. zool. Soc. Lond. 135: 491—523.
Green J. 1967 — The distribution and variation of Daphnia lumholtzii (Crustacea: Cladocera) in relation to fish predation in Lake Albert, East Africa — J. Zool. 151: 181—197.
Halbach U. 1970 — Die Ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria) — Oecologia, 4: 262—318.
Halbach U. 1971a — Zum Adaptivwert der Zyklomorphen von Dornenbildung von Brachionus calyciflorus Pallas (Rotatoria). I. Rauber — Beute — Beziehung in Kurzzeit — Versuchen — Oecologia, 6: 267—288.
Halbach U. 1971b — Seasonal selection as a factor in rotifer cyclomorphosis — Naturwissenschaften, 6: 326—327.
Halbach U. 1972 — Assoziations Koeffizient an dreier planktischer Rotatorien-arten im Freiland und ihre Deutung auf Grund interspezifischer Beziehungen (Konkurrenz, Rauber — Beute — Beziehung) — Oecologia, 9: 311—316.
Hartmann O. 1918 — Studien uber den Polymorphismus der Rotatorien mit besondered Berucksichtigung von Anuraea acullata — Arch. Hydrobiol. 12: 210— 309.
Hazelwood D. H. 1966 — Illumination and turbulence effects of relative growth in Daphnia — Limnol. Oceanogr. 11: 212—216.
Hebert P. D. N. 1978a — Cyclomorphosis in natural populations of Daphnia cephalata King — Freshwat. Biol. 8: 79—90.
Hebert P. D. N. 1978b — The adaptive significance of cyclomorphosis in Daphnia: more possibilities — Freshwat. Biol. 8: 313—320.
Hillbricht-Ilkowska A. 1972 — Morphological variation of Keratella coehlearis (Gosse) (Rotatoria) in several Masurian lakes of different trophic level — Pol. Arch. Hydrobiol. 19: 253—264.
Hrbaćek J. 1959 — Circulation of water as a main factor influencing the development of helmets in Daphnia cucullata Sars — Hydrobiologia, 13: 170—185.
Hrbaćek J. 1962 — Species composition and the amount of zooplankton in relation to the fish stock — Rozpr. ćsl. Akad. Ved, Rada MPV, 72: 1—116.
Huber-Pestalozzi G. 1938 — Das Phytoplankton des Susswassers. Systematik und Biologie. Allgemeiner Teil. Blaualgen, Bakterien, Pilze — Binnengewasser 16, Teil 1, ss. 342.
Huber G., Nipkov F. 1923 — Experimentelle Untersuchungen uber Entwicklung und Formbildung von Ceratium hirundinella O. F. Muller — Flora Jena, 16: 114—215.
Hutchinson G. E. 1967 — A treatise on limnology II. Introduction to lake biology and the limnoplankton — John Wiley and Sons, Inc. New York, London, Sydney, ss. 1115.
Jacobs J. 1961 — Cyclomorphosis in Daphnia galeata mendotae Birge, a case of environmentally controlled allometry — Arch. Hydrobiol. 58: 7—71.
Jacobs J. 1962 — Light and turbulence as co-determinants of relative growth rates in cyclomorphic Daphnia — Int. Revue ges. Hydrobiol. Hydrogr. 47: 146—156.
Jacobs J. 1964 — Hat der hohe Sommerhelm zyklomorpher Daphnien einen Anpassungswert — Verh. int. Verein. Limnol. 15: 676—683.
Jacobs J. 1967 — Untersuchungen zur Funktion und Evolution der Zyklomorphose bei Daphnia, mit besonderer Berucksichtigung der Selektion durch Fische — Arch. Hydrobiol. 62: 467—541.
Kabay M. E., Gilbert J. J. 1978 — Polymorphism in the rotifer Asplanchna sieboldi. Intensivity of the body-wall-outgrowth response to temperature, food density, pH and osmolarity differences — Arch. Hydrobiol. 83: 377—390.
Kerfoot W. C. 1975a — Seasonal changes of Bosmina (Crustacea, Cladocera) in Frains Lake, Michigan: laboratory observations of phenotypic changes induced by inorganic factors — Freshwat. Biol. 5: 227—243.
Kerfoot W. C. 1975b — The divergence of adjacent populations — Ecology, 56: 1298—1313.
Kerfoot W. C. 1977a — Competition in cladoceran communities: the cost of evolving defenses against copepod predation — Ecology, 58: 303—313.
Kerfoot W. C. 1977b — Implications of copepod predation — Limnol. Oceanogr. 22: 316—326.
Kerfoot W. C., Pastorok R. A. 1978 — Survival versus competition: evolutionary compromises and diversity in the zooplankton — Verh. int. Verein. Limnol. 20: 362—374.
Kikuchi K. 1931 — Formation of the lateral spines in Brachionus pala — J. Fac. Sci. Imp. Univ. Tokyo, Sec. 4, 2: 163—169.
King Ch. E. 1967 — Food, age and thy dynamics of a laboratory population of rotifers — Ecology, 48: 111—128.
Koźmiński Z. 1936 — Morphometrische und okologische Untersuchungen an Cyclopiden der Strenuus-Gruppe — Int. Revue ges. Hydrobiol. Hydrogr. 33: 161— 231.
Kratzschmar H. 1908 — Uber den Polymorphismus von Anuraea aculeata Ehrbg. Variationsstatistische und experimentelle Untersuchung — Int. Revue ges. Hydrobiol. Hydrogr. 1: 623—675.
Lauterborn R. 1901 — Der Formenkreis von Anuraea cochlearis. Ein Beitrag zur Kenntnis der Variabilitat bei Rotatorens. I Teil: Morphologische Gleiderung des Formenkreises — Verh. naturh.-med. Ver. Heidelb. 7: 412—448.
Lauterborn R. 1904 — Der Formenkreis von Anuraea cochlearis. Ein Beitrag zur Kenntnis der Variabilitat bei Rotatorens. II Teil: Die cyclische oder temporale Variation von Anuraea cochlearis — Verh. naturh.-med. Ver. Heidelb. 7: 529—621.
Levins R. 1968 — Evolution in changing environment — Princeton University Press, Princeton, ss. 120.
Lieder U. 1953 — Beitrage zur Kenntnis der Genus Bosmina. II. Uber Bestarde zwischen einigen Formtypen der Coregoni-Kreises — Arch. Hydrobiol. 47: 453— 469.
Lindstrom K., Pejler B. 1975 — Experimental studies on the seasonal variation of the Rotifer Keratella cochlearis (Gosse) — Hydrobiologia, 2—3: 191—197.
Manning B. J., Kerfoot W. C., Berger E. M. 1978 — Phenotypes and genotypes in cladoceran populations — Evolution, 32: 365—374.
Manuilova E. F. 1955 — O svjazi izmecivosti pelagićeskich Cladocera s razvitem bakterij v vodoeme — Dokl. AN SSSR, 103: 1111—1114.
Mayr E. 1963 — Animal species and evolution — Harvard University Press, Cambridge, Mass., ss. XIV + 797.
Mayr E. 1974 — Populacje, gatunki i ewolucja — Wiedza Powszechna, Warszawa, ss. 592.
Mitchell B. D. 1978 — Cyclomorphosis in Daphnia carinata King (Crustacea: Cladocera) from two adjacent sewage lagoons in South Australia — Aust. J. mar. Freshwater Res. 29: 565—576.
Needham J., Lerner J. M. 1940 — Terminology of relative growth-rates — Nature, Lond. 146: 618.
O’Brien W. J., Vinyard G. L. 1978 — Polymorphism and predation: The effect of invertebrate predation on the distribution of two varieties of Daphnia carinata in South India Ponds — Limnol. Oceanogr. 23: 452—460.
Ostwald W. 1904 — Experimentelle Untersuchungen uber den Saisonpolymorphism bei Daphniden — Arch. Entw Meeh. Org. 18: 415—451.
Pejler B. 1957 — On variation and evolution in planktonic Rotatoria — Zool. Bidr. Upp. 32: 1—66.
Pejler B. 1962 — On the variation of the rotifer Keratella cochlearis (Gosse) — Zool. Bidr. Upps. 35: 1—17.
Porter K. G. 1973 — Selective grazing and differential digestion of algae by zooplankton — Nature, Lond. 244: 179—180.
Pourriot R. 1964 — Etude experimentale de variations morphologiques chez certaines especes de Rotiferes — Bull. Soc. zool. Fr. 89: 555—561.
Pourriot R. 1973 — Rapports entre la temperatura, la taille des adultes, la longueur des oeufs et le taux de developpement embryonnaire chez Brachionus calyciflrous Pallas (Rotifer a) — Annls Hydrobiol. 4: 103—115.
Pourriot R. 1974 — Relations predateur-proie chez les Rotiferes: Influence du predateur (Asplanchna brightwelli) sur la morphologie de la proie (Brachionus bidentata) — Annls Hydrobiol. 5: 43—55.
Quartier A. 1948 — Sur le comportement de Tabellaria fenestrata (Lyngb.) Ktz. dans les trois lacs sub-jurassiens — Schweiz. Z. Hydrol. 10: 13—22.
Schonborn W. 1962 — Uber Planktismus und Zyklomorphose bei Difflugia limnetica (Levander) Penard — Limnologica, 1: 21—34.
Shapiro A. M. 1976 — Seasonal polyphenism (W: Evolutionary biology. Vol. 9. Red. M. K. Hecht, W. C. Steere, B. Wallace) — Plenum Press, New Yotk and London, 259—333.
Sterzyński W. 1979 — Fecundity and body size of planktonic rotifers in 30 Polish lakes of various trophic state — Ekol. pol. 27: 307—321.
Tonolli V. 1961 — Studio sulla dinamica del popolamento di un copepode (Eudiaptomus vulgaris Schmeid.) — Mem. Ist. ital. Idrobiol. 13: 179—202.
Vinyard G. L., O’Brien W. J. 1975 — Dorsal light response as an index of prey preference in bluegill surfish (Lepomis macrochirus) — J. Fish. Res. Bd Can. 32: 1860—1863.
Vinyard G. L., O’Brien W. J. 1976 — Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus) — Ecology, 55: 1042—1052.
Wagler E. 1936 — Die Systematik und geographische Verbreitung des Genus Daphnia O. F. Muller mit besondered Berucksichtigung der sudafrikanischen Arten — Arch. Hydrobiol. 30: 505—556.
Wesenberg-Lund C. 1908 — Plankton investigations of the Danish lakes. General Part: The Baltic freshwater plankton, its origin and variation — Dan. freshw. biol. lab. No 5, Nordisk Forlag, Copenhagen, ss. 389.
Węgleńska T. 1970 — Zagadnienie wpływu temperatury i pokarmu na rozwój, wzrost osobniczy i płodność zooplanktonu — Wiad. ekol. 16: 3—21.
Wiktor K. 1961 — Wpływ warunków środowiska na zmienność populacji Bosnana coregoni, Daphnia hyalina i Daphnia cucullata — Ekol. pol. A, 9: 79—97.
Woltereck R. 1909 — Weitere exper. Unters. ub. Artveranderung, speciell uber das Wesen quant. Artunterschiede bei Daphniden — Verh. dt. zool. Ges. 19: 110— 173.
Woltereck R. 1913 — Uber Funktion, Herkunft u. Entstehungsursachen der sogen. Schwebefortsatze pelagischer Cladoceren — Zoologica, Stuttg. 67: 475—550.
Zaret T. M. 1969 — Predation-balance polymorphism of Ceriodaphnia cornuta Sars — Limnol. Oceanogr. 14: 301—303.
Zaret T. M. 1972a — Predator-prey interaction in a tropical lacustrine ecosystem — Ecology, 53: 234—257.
Zaret T. M. 1972b — Predators, invisible prey, and the nature of polymorphism in the Cladocera (class Crustacea) — Limnol. Oceanogr. 17: 171—184.
Zaret T. M., Kerfoot W. C. 1975 — Fish predation on Bosmina longirostris. Body-size selection versus visibility selection — Ecology, 56: 232—237.

Relation:

Ekologia Polska. Seria B ; Wiadomości Ekologiczne

Volume:

26

Issue:

1

Start page:

3

End page:

23

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

ISSN 0013-2969

Source:

MiIZ PAN, call no. P.3259

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -

Digitizing institution:

Museum and Institute of Zoology of the Polish Academy of Sciences

Original in:

Library of the Museum and Institute of Zoology of the Polish Academy of Sciences

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

×

Citation

Citation style: