Object structure
Title:

Wpływ zbiornika retencyjnego na fizykochemiczne właściwości rzeki himalajskiej (Tista, Indie) = Impact of a dam reservoir on the chemistry of a Himalayan river (the Teesta, India)

Subtitle:

Przegląd Geograficzny T. 89 z. 1 (2017)

Creator:

Prokop, Paweł ORCID ; Wiejaczka, Łukasz ; Kozłowski, Rafał ; Sarkar, Subir

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2017

Description:

24 cm

Type of object:

Czasopismo/Artykuł

Subject and Keywords:

chemizm wód ; jakość wody ; zbiornik zaporowy ; rzeka Tista ; Himalaje

Abstract:

W artykule przedstawiono rolę nowo wybudowanego zbiornika retencyjnego w kształtowaniu właściwości fizykochemicznych i składu chemicznego rzeki Tisty (dopływ Brahmaputry) w Himalajach. Badania terenowe przeprowadzono w okresie pomonsunowym w latach 2013-2015. Analiza składu chemicznego wody w profilu podłużnym rzeki powyżej i poniżej zbiornika wykazała, że w zbiorniku następuje obniżenie stężenia większości podstawowych jonów (Cl– , K+, Na+, Mg2, NO3 i PO4 3–), odwrotny trend zaobserwowano tylko w przypadku jonów Ca2+, SO4 2– i NH4+. Istnienie zapory nie wpływa na stężenie jonów F– . Poniżej zbiornika odnotowano nieznaczne wzbogacenie wód w jony metali: Cu, Ni, Zn, Cr, C i Sr. Mniejsze stężenie jonów w rzece poniżej zapory wskazuje na procesy samooczyszczania wody retencjonowanej w zbiorniku. Zmiany właściwości fizykochemicznych oraz stężeń jonów następujące w zbiorniku są niwelowane przez czynniki środowiskowe jeszcze na obszarze Himalajów na odcinku do 15 km poniżej zapory.

References:

1. Abrahim G.M.S., Parker R.J., 2008, Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand, Environmental Monitoring and Assessment, 136, 1-3, s. 227-238.
2. Acharyya S.K., 1980, Structural framework and tectonic evolution of the Eastern Himalaya, Himalayan Geology, 10, s. 412-439.
3. Allan J.D., Castillo M.M., 2007, Stream Ecology: Structure and Function of Running Waters, Springer Science & Business Media.
https://doi.org/10.1007/978-1-4020-5583-6 -
4. Bhattacharyya K., Mitra G., 2012, Geometry and kinematics of the Darjeeling-Sikkim Himalaya, India: Implications for the evolution of the Himalayan Fold-Thrust Belt, EGU General Assembly Conference Abstracts, 14, 4226.
5. Bi S.P., An S.Q., Liu F., 2001, A practical application of Driscoll's equation for predicting the acid-neutralizing capacity in acidic natural waters equilibria with the mineral phase gibbsite, Environment International, 26, 5, s. 327-333; doi: 10.1016/S0160-4120(01)00008-3.
https://doi.org/10.1016/S0160-4120(01)00008-3 -
6. Birch G.F., Olmos M.A., 2008, Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies, ICES, Journal of Marine Science, 65, 8, s. 1407-1413.
https://doi.org/10.1093/icesjms/fsn139 -
7. Bookhagen B., Burbank D.W., 2010, Towards a complete Himalayan hydrological budget: The spatiotemporal distribution of snow melt and rainfall and their impact on river discharge. Journal of Geophysical Research-Earth Surface, 115 (F3); doi:10.1029/2009jf001426.
https://doi.org/10.1029/2009JF001426 -
8. CISMHE (Centre for Inter Disciplinary Studies of Mountain and Hill Development), 2006, Carrying Capacity Study of Teesta Basin in Sikkim. Volume IV: Water Environment, New Delhi.
9. Champion H.G., Seth S.K., 1968, A Revised Survey of Forest Types of India, Manager Publications, New Delhi.
10. Chapman D.V. (red.), 1996, Water Quality Assessments: A Guide to the Use of Biota, Sediments, and Water in Environmental Monitoring, 2nd ed., UNESCO, World Health Organization, United Nations Environment Programme, London.
11. Fairchild G.W., Velinsky D.J. 2006, Effects of small ponds on stream water chemistry, Lake and Reservoir Management, 22, s. 321-330.
https://doi.org/10.1080/07438140609354366 -
12. Galy A., France-Lanord C., Derry L.A., 1999, The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh, Geochimica et Cosmochimica Acta, 63, s. 1905-1925.
https://doi.org/10.1016/S0016-7037(99)00081-2 -
13. Gao Y., Wang B., Liu X., Wang Y., Zhang J., Jiang Y., Wang F., 2013, Impacts of river impoundment on the riverine water chemistry composition and their response to chemical weathering rate, Frontiers of Earth Science, 7, s. 351-360.
https://doi.org/10.1007/s11707-013-0366-y -
14. Grumbine R.E., Pandit M.K., 2013, Threats from India's Himalaya dams, Science, 339, 6115, s. 36-37.
https://doi.org/10.1126/science.1227211 -
15. Hannan H.H., 1979, Chemical modifi cations in reservoir-regulated streams, [w:] J.V. Ward, J.A. Stanford (red.), The Ecology of Regulated Streams, Springer US, s. 75-94.
16. Harrison J.A., Maranger R.J., Alexander R.B., Giblin A.E., Jacinthe P.A., Mayorga E., Wollheim W.M., 2009, The regional and global significance of nitrogen removal in lakes and reservoirs, Biogeochemistry, 93, 1-2, s. 143-157.
17. Hem J.D., 1985, Study and Interpretation of the Chemical Characteristics of Natural Water, 2254, Department of the Interior, US Geological Survey.
18. Hemond H.F., 1990, Acid Neutralizing Capacity, Alkalinity, and Acid-Base Status of Natural Waters Containing Organic Acids, Environmental Science and Technology, 24, 10, s. 1486-1489.
https://doi.org/10.1021/es00080a005 -
19. Livingstone D.A., 1963, Chemical Composition of Rivers and Lakes, US Government Printing Office, Washington.
20. Mahanta C., Subramanian V., 2004, Water quality, mineral transport and sediment biogeochemistry, [w:] V. Singh, N. Sharma, C.S.P. Ojha (red.), The Brahmaputra Basin Water Resources, 47, Springer Science & Business Media, s. 376-400.
21. Murray J.A., Bochin N.A., 1973, Instructions for Compilation of the Chapter on Catastrophic Floods for the UNESCO Publication "Annual Summary of Information on natural Disasters", Forms with Explanatory Notes, UNESCO, Paris.
22. Nikanorov A.M., Brazhnikova L.V., 2009, Types and Properties of Water, 2: Water Chemical Composition of Rivers, Lakes and Wetlands, Encyclopedia of Life Support Systems.
23. Palmer R.W., O'Keeffe J.H., 1990, Downstream effects of impoundments on the water chemistry of the Buffalo River (Eastern Cape), South Africa, Hydrobiologia, 202, s. 71-83.
https://doi.org/10.1007/BF02208128 -
24. Piper A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses, Eos, Transactions American Geophysical Union, 25, 6, s. 914-928.
https://doi.org/10.1029/tr025i006p00914 -
25. Prokop P., Płoskonka D., 2014, Natural and human impact on the land use and soil properties of the Sikkim Himalayas piedmont in India, Journal of Environmental Management, 138, s. 15-23.
https://doi.org/10.1016/j.jenvman.2014.01.034 -
26. Reuss J.O., Johnson D.W., 1986, Acid Deposition and the Acidifi cation of Soils and Water, Eological Studies, 59, Springer.
https://doi.org/10.1007/978-1-4419-8536-1 -
27. Rigacci L.N., Giorgi A.D., Vilches C.S., Ossana N.A., Salibián A., 2013, Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina, Environmental Monitoring and Assessment, 185, 11, s. 9161-9168.
https://doi.org/10.1007/s10661-013-3243-y -
28. Sharma S.K., Subramanian V., 2008, Hydrochemistry of the Narmada and Tapti Rivers, India, Hydrological Processes, 22, 17, s. 3444-3455.
https://doi.org/10.1002/hyp.6929 -
29. Singh A.K., Mondal G.C., Singh P.K., Singh S., Singh T.B., Tewary B.K., 2005, Hydrochemistry of reservoirs of Damodar River basin, India: weathering processes and water quality assessment, Environmental Geology, 48, 8, s. 1014-1028.
https://doi.org/10.1007/s00254-005-1302-6 -
30. Singh S.K., Sarin M.M., France-Lanord C., 2005, Chemical erosion in the eastern Himalaya: Major ion composition of the Brahmaputra and δ 13C of dissolved inorganic carbon, Geochimica et Cosmochimica Acta, 69, 14, s. 3573-3588.
https://doi.org/10.1016/j.gca.2005.02.033 -
31. Soja R., Wiejaczka Ł., 2014, The impact of a reservoir on the physicochemical properties of water in a mountain river, Water and Environment Journal, 28, 4, s. 473-482; doi: 10.1111/wej.12059.
https://doi.org/10.1111/wej.12059 -
32. Starkel L., Basu S. (red.), 2000, Rains, Landslides and Floods in the Darjeeling Himalaya, INSA, New Delhi.
33. Subramanian V., 2004, Water quality in south Asia, Asian Journal of Water, Environment and Pollution, 1, 1-2, s. 41-54.
34. Vörösmarty C.J., Fekete B.M., Tucker B.A., 2004, Monthly mean river discharge at gauging station Anderson Bridge, doi: 10.1594/PANGAEA.218327.
35. Zhao Q., Liu S., Deng L., Yang Z., Dong S., Wang C., Zhang Z., 2012, Spatio-temporal variation of heavy metals in fresh water after dam construction: a case study of the Manwan Reservoir, Lancang River, Environmental Monitoring and Assessment, 184, 7, s. 4253-4266.
https://doi.org/10.1007/s10661-011-2260-y -

Relation:

Przegląd Geograficzny

Volume:

89

Issue:

1

Start page:

165

End page:

181

Resource type:

Tekst

Detailed Resource Type:

Artykuł

Format:

Rozmiar pliku 1,3 MB ; application/pdf

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2017.1.9

Source:

CBGiOŚ. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Licencja Creative Commons Uznanie autorstwa 3.0 Polska

Terms of use:

Zasób chroniony prawem autorskim. [CC BY 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -

Digitizing institution:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Original in:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Projects co-financed by:

Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R ; Unia Europejska. Europejski Fundusz Rozwoju Regionalnego

Access:

Otwarty

×

Citation

Citation style: