Object structure
Title:

Długookresowe wahania przepływów rocznych głównych rzek w Polsce i ich związek z cyrkulacją termohalinową Atlantyku Północnego = Long-term fluctuations of annual discharges of the main rivers in Poland and their association with the Northern Atlantic Thermohaline Circulation

Subtitle:

Przegląd Geograficzny T. 88 z. 3 (2016)

Creator:

Marsz, Andrzej A. ; Styszyńska, Anna ; Krawczyk, Wiesława E.

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2016

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

annual discharges of rivers ; multi-decadal oscillation ; Poland ; thermohaline circulation

Abstract:

In this paper it is the associations between mean annual discharges of the main rivers in Poland and the surface component of the Northern Atlantic Thermohaline Circulation (NA THC) that are analysed. Relevant data derived from hydrometric profiles on the country’s main rivers, i.e. the Vistula at Tczew (years 1901-2015), the River Bug at Wyszków (1921-2015), the Oder at Gozdowice (1901-2015) and the Warta in Poznań (1822-2015). Use was also made of the time series for annual discharges of the Vistula at Toruń (1822-2000). Results show that, despite marked inter-annual variability to discharges in two periods (1921-2015 and 1822-2000), there is a common rhythm to long-term discharge fluctuations (Table 1, Figure 1), with consecutive increases and decreases in annual discharges. The analysis shows that the changeability of annual discharges and variability in the NA THC are characterised by weak, but highly statistically signifi cant associations (Table 2). In periods in which the NA THC intensifies (as indicated by the DG3L index), river discharges are found to decrease; whereas a fall in the intensity of NA THC is associated with an increase in the intensity of river discharges (Figs. 2, 3 and 4). While small, these differences do assume a high level of statistical significance (Fig. 4). Figs. 2, 3 and 4 also show how the occurrence of positive values for the NA THC (+DG3L) sees the degree of variability of annual discharges reduced in relation to that present when values for the NA THC are negative (–DG3L). Given that the variability characterising the DG3Lindex (NA THC) displays multi-decadal oscillations (Fig. 6), it is not surprising that such oscillations also occur where discharges from Poland’s main rivers are concerned. The differences between discharges occurring in the positive and negative phases of the NA THC (+DG3L and –DG3L amount to around 10%. The main reason for such an association is that variability in the NA THC (with which changes in the thermal state of the Northern Atlantic are connected) is what is known to regulate some aspects of atmospheric circulation. As a result, in the circumstances of positive values for the DG3L index, mean annual air temperature in Poland is higher (and in April, July and August significantly higher) than at times when a negative DG3L index is present. When positive values for the DG3L index arise, there are greater losses due to evaporation (or evapotranspiration) in the river catchments in Poland, with the result that discharges are reduced. No statistically significant relationships were found between the NA THC and precipitation in Poland. However, while there are no statistically significant relationships between mean annual discharges from the rivers in Poland and the AMO index, associations between discharges and the DG3L index – characterising the intensity of the thermohaline circulation in the Northern Atlantic – do achieve statistical significance. The results obtained suggest that the relationship between the intensity of the NA THC and the occurrence of droughts in Poland should be investigated.

References:

1. Andronova N.G., Schlesinger M.E., 2000, Causes of global temperature changes during the 19th and 20th centuries, Geophysical Research Letters, 27, 14, s. 2137-2140.
2. Broecker W., 1991, The great ocean conveyor, Oceanography, 4, s. 79-89.
3. Carton J., 2011, Introduction to Atlantic Meridional Overturning Circulation (AMOC), Deep Sea Research II, 58, s. 1741-1743; doi: 10.1016/j.dsr2.2010.10.055.
http://dx.doi.org/10.1016/j.dsr2.2010.10.055 -
4. Carton J.A., Cao X., Giese B.S., Da Silva A.M., 1996, Decadal and Interannual SST Variability in the Tropical Atlantic Ocean, Journal of Physical Oceanography, 26, 7, s. 1165-1175; doi: http://dx.doi.org/10.1175/1520-0485(1996)026<1165:DAISVI>2.0.CO;2.
http://dx.doi.org/10.1175/1520-0485(1996)026<1165:DAISVI>2.0.CO;2 -
5. Carton J., Cunningham S.A., Frajka-Williams E., Kwon Y-O., Marshall D.P., Msadek R., 2014, The Atlantic Overturning Circulation: More evidence of variability and links to climate, BAMS (Bulletin of American Meteorogical Society), 95, 8, ES63-ES66.
http://dx.doi.org/10.1175/BAMS-D-13-00234.1 -
6. Chylek P., Klett J.D., Lesins G., Dubey M.K., Hengartner N., 2014, The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate, Geophysical Research Letters, 41, s. 1689-1697; doi: 10.1002/2014GL059274.
http://dx.doi.org/10.1002/2014GL059274 -
7. Czaja A., Frankignoul C., 1999, Influence of the North Atlantic SST on the atmospheric circulation, Geophysical Research Letters, 26, 19, s. 2969-2972.
8. Delworth T.L., Greatbatch R.J., 2000, Multidecadal thermohaline circulation variability driven by atmospheric surface fl ux forcing, Journal of Climate, 13, 9, s. 1481-1495; doi: http://dx.doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2 -
9. Delworth T.L., Knutson T.R., 2000, Simulation of early 20th Century global warming, Science, 287, s. 2246-2250; doi: 10.1126/science.287.5461.2246.
http://dx.doi.org/10.1126/science.287.5461.2246 -
10. Delworth T.L., Mann M.E., 2000, Observed and simulated multidecadal variability of the Northern Hemisphere, Climate Dynamics, 16, 9, s. 661-676; doi: 10.1007/s003820000075.
http://dx.doi.org/10.1007/s003820000075 -
11. Enfield D.B., Mestas-Nu-ez A.M., Trimble P.J., 2001, The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S., Geophysical Research Letters, 28, 10, s. 2077-2080.
12. Folland C.K., Knight J., Linderholm H.W., Fereday D., Ineson S., Hurrell J.W., 2009, The Summer North Atlantic Oscillation: Past, present, and future, Journal of Climate, 22, 5, s. 1082-1103; doi: http://dx.doi.org/10.1175/2008JCLI2459.1.
http://dx.doi.org/10.1175/2008JCLI2459.1 -
13. Frankignoul C., Friederichs P., Kestenare E., 2003, Influence of Atlantic SST anomalies on the atmospheric circulation in the Atlantic-European sector, Annals of Geophysics, 46, 1, s. 71-85.
14. Gray S.T., Graumlich L.J., Betancourt J.L., Pederson G.T., 2004, A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D., Geophysical Research Letters, 31, L12205; doi: 10.1029/2004GL019932.
http://dx.doi.org/10.1029/2004GL019932 -
15. Grossmann I., Klotzbach P.J., 2009, A review of North Atlantic modes of natural variability and their driving mechanisms, Journal of Geophysical Research, 114, D24107 (1-14); doi: 10.1029/2009JD012728.
http://dx.doi.org/10.1029/2009JD012728 -
16. Gulev S.K., Latif M., Keenlyside N., Park W., Kolterman K.P., 2013, North Atlantic Ocean control on surface heat flux on multidecadal timescales, Nature, 499, s. 464-467; doi: 10.1038/nature12268
http://dx.doi.org/10.1038/nature12268 -
17. Gutry-Korycka M., Boryczka J., 1990, Długookresowe zmiany elementów bilansu wodnego w Polsce i zlewisku Bałtyku, Przegląd Geofizyczny, 35, 3-4, s. 19-32.
18. Hurrell J.W., 1995, Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation, Science, 269, 5224, s. 676-679.
19. Jones P.D., Jónsson T., Wheeler D., 1997, Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland, International Journal of Climatology, 17, 13, s. 1433-1450.
20. Jokiel P., Kożuchowski K., 1989, Zmiany wybranych charakterystyk hydroklimatycznych Polski w bieżącym stuleciu, Dokumentacja Geograficzna, 6, IGiPZ PAN, Warszawa.
21. Kaczorowska Z., 1962, Opady w Polsce w przekroju wieloletnim: tendencje, okresowość oraz prawdopodobieństwo występowania niedoboru i nadmiaru opadów, Prace Geograficzne, IG PAN, 33, Warszawa.
22. Kerr R. A., 2000, A North Atlantic climate pacemaker for the centuries, Science, 288, 5473, s. 1984-1986.
23. Knight J.R., Allan R.J., Folland C.K., Vellinga M., Mann M.E., 2005, A signature of persistent natural thermohaline circulation cycles in observed climate, Geophysical Research Letters, 32, 20, L20708; doi: 10.1029/2005GL024233.
http://dx.doi.org/10.1029/2005GL024233 -
24. Knight J.R., Folland C.K., Scaife A.A., 2006, Climate impacts of the Atlantic Multidecadal Oscillation, Geophysical Research Letters, 33, L17706; doi: 10.1029/2006GL026242.
http://dx.doi.org/10.1029/2006GL026242 -
25. Kushnir Y., Seager R., Ting M., Naik N., Nakamura J., 2010, Mechanisms of Tropical Atlantic SST influence on North American precipitation variability, Journal of Climate, 23, 21, s. 5610-5628; doi: http://dx.doi.org/10.1175/2010JCLI3172.1
http://dx.doi.org/10.1175/2010JCLI3172.1 -
26. Latif M., Roeckner E., Botzet M., Esch M., Haak H., Hagemann S., Jungclaus J., Legutke S., Marsland S., Mikolajewicz U., Mitchell J., 2004, Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic Thermohaline Circulation with sea surface temperature, Journal of Climate, 17, 7, s. 1605-1614; doi: http://dx.doi.org/10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2.
http://dx.doi.org/10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2 -
27. Makowski J., Tomczak A., 2002, Stany wody Wisły w Toruniu w świetle pomiarów z ostatnich dwóch stuleci, Studia Societatis Scientiarum Toruniensis, Sectio C (Geographia et Geologia), 11, 1.
28. Marsz A.A., 2011, O związkach między zmianami temperatury powierzchni Morza Sargassowego a zmianami temperatury powietrza na półkuli północnej (1880-2007), Landform Analysis, 15, s. 17-38.
29. Marsz A., 2015, Cyrkulacja termohalinowa na Atlantyku Północnym a temperatura powietrza w Polsce (1961-2010), Przegląd Geofizyczny, 60, 3-4, s. 109-131.
30. Marsz A., 2015, Model zmian powierzchni lodów morskich Arktyki (1979-2013) – zmienne sterujące w modelu minimalistycznym" i ich wymowa klimatyczna, Problemy Klimatologii Polarnej, 25, s. 249-334.
31. Marsz A.A., Styszyńska A., 2009, Oceanic control of the warming processes in the Arctic – a different point of view for the reasons of changes in the Arctic climate, Problemy Klimatologii Polarnej, 19, s. 7-31.
32. Nigam S., Guan B., Ruiz-Barradas A., 2011, Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains, Geophysical Research Letters, 38, L16713; doi: 10.1029/2011GL048650.
http://dx.doi.org/10.1029/2011GL048650 -
33. Oglesby R.J., Feng S., Hu Q., Rowe C., 2011, Medieval drought in North America: The role of the Atlantic Multidecadal Oscillation, PAGES news, 19, 1, s. 18-20.
34. Oglesby R., Feng S., Hu Q., Rowe C., 2012, The role of the Atlantic Multidecadal Oscillation on medieval drought in North America: Synthesizing results from proxy data and climate models, Global and Planetary Change, 84-85, s. 56-65. doi: 10.1016/j.gloplacha.2011.07.005.
http://dx.doi.org/10.1016/j.gloplacha.2011.07.005 -
35. Olejnik K., 1991, Przepływy Warty w Poznaniu 1822-1988, Fundacja Warta, Poznań.
36. Piętka I., 2009, Wieloletnia zmienność wiosennego odpływu rzek polskich, Prace i Studia Geograficzne UW, 43, s. 81-95.
37. Pociask-Karteczka J., 2006, River hydrology and the North Atlantic Oscillation: A general review, AMBIO: A Journal of the Human Environment 35, 6, s. 312-314; doi: http://dx.doi.org/10.1579/05-S-114.1.
http://dx.doi.org/10.1579/05-S-114.1 -
38. Pociask-Karteczka J., Limanówka D., Nieckarz Z., 2002-2003, Wpływ oscylacji północnoatlantyckiej na przepływy rzek karpackich (1951-2000), Folia Geographica, ser. Geographica Physica, 33-34, s. 89-104.
39. Pohlmann H., Sienz F., Latif M., 2006, Influence of the Multidecadal Atlantic Meridional Overturning circulation variability on European climate, Journal of Climate, 19 (23 - Special Section: Climate Variability and Predictability Study (CLIVAR): Atlantic Climate Predictability), s. 6062-6067; doi: http://dx.doi.org/10.1175/JCLI3941.1.
http://dx.doi.org/10.1175/JCLI3941.1 -
40. Schlesinger M.E., Ramankutty N., 1994, An oscillation in the global climate system of period 65–70 years, Nature, 367, s. 723-726.
41. Screen J.A., 2013, Influence of Arctic sea ice on European summer precipitation, Environmental Research Letters, 8; 044015; s. 1-9; doi: 10.1088/1748-9326/8/4/044015.
http://dx.doi.org/10.1088/1748-9326/8/4/044015 -
42. Smith T.M., Reynolds R.W., Peterson T.C., Lawrimore J., 2008, Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006), Journal of Climate, 21 (10), s. 2283-2296; doi: http://dx.doi.org/10.1175/2007JCLI2100.1.
http://dx.doi.org/10.1175/2007JCLI2100.1 -
43. Styszyńska A., Tamulewicz J., 2005, Warta river discharges in Poznań and atmospheric circulation in the North Atlantic region, Quaestiones Geographicae, 23, s. 63-81.
44. Sutton R.T., Hodson D.L.R., 2005, Atlantic Ocean forcing of North American and European summer climate, Science, 290, s. 2133-2137.
45. Sutton R.T., Hodson D.L.R., 2007, Climate response to basin-scale warming and cooling of the North Atlantic Ocean, Journal of Climate, 20, 5, s. 891-907; doi: http://dx.doi.org/10.1175/JCLI4038.1.
http://dx.doi.org/10.1175/JCLI4038.1 -
46. Sutton R.T., Dong B., 2012, Atlantic Ocean influence on a shift in European climate in the 1990s, Nature Geoscience, 5, s. 788-792; doi: 10.1038/ngeo1595.
http://dx.doi.org/10.1038/ngeo1595 -
47. Ting M., Kushnir Y., Seager R., Li C., 2011, Robust features of Atlantic multi-decadal variability and its climate impacts, Geophysical Research Letters, 38, L17705; doi: 10.1029/2011GL048712.
http://dx.doi.org/10.1029/2011GL048712 -
48. Vimont D.J., Kossin J.P., 2007, The Atlantic Meridional Mode and hurricane activity, Geophysical Research Letters, 34, L07709; doi: 10.1029/2007GL029683.
http://dx.doi.org/10.1029/2007GL029683 -
49. Vorosmarty C.J., Fekete B.M., Tucker B.A., 1998, Global River Discharge, 1807-1991, Version 1.1 (RivDIS). Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.; doi: 10.3334/ORNLDAAC/199.
http://dx.doi.org/10.3334/ORNLDAAC/199 -
50. Willems P., 2013, Multidecadal oscillatory behaviour of rainfall extremes in Europe, Climatic Change, 120, s. 931-944; doi: 10.1007/s10584-013-0837-x.
http://dx.doi.org/10.1007/s10584-013-0837-x -
51. Wrzesiński D., 2009, Tendencje zmian przepływu rzek Polski w drugiej połowie XX w., Badania Fizjograficzne nad Polską Zachodnią, Ser. A., 60, s. 147-162; doi: 10.2478/v10116-009-0025-x.
52. Wrzesiński D., 2011, Regional differences in the influences of the North Atlantic Oscillation on seasonal river runoff in Poland, Quaestiones Geographicae, 30, 3, s. 127-236.
53. Wrzesiński D., Paluszkiewicz R., 2011, Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe, Hydrology Research, 42, 1, s. 30-39, doi: 10.2166/nh.2010.077.
http://dx.doi.org/10.2166/nh.2010.077 -
54. Zhang R., Delworth T.L., Held I.M., 2007, Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?, Geophysical Research Letters, 34, L02709, doi: 10.1029/2006GL028683.
http://dx.doi.org/10.1029/2006GL028683 -
55. Zhang L., Wang C., 2013, Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations, Journal of Geophysical Research: Oceans, 118, 10, s. 5772-5791, doi: 10.1002/jgrc.20390.
http://dx.doi.org/10.1002/jgrc.20390 -
56. Zveryaev I.I., 2009, Interdecadal changes in the links between European precipitation and atmospheric circulation during boreal spring and fall, Tellus, 61 A, s. 50-56.

Relation:

Przegląd Geograficzny

Volume:

88

Issue:

3

Start page:

295

End page:

316

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 0,7 MB ; application/pdf

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2016.3.1

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: