Object structure
Title:

The use of kettle holes for reconstructing former soil cover in different types of land use

Subtitle:

Geographia Polonica Vol. 89 No. 3 (2016)

Creator:

Kruczkowska, Bogusława

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2016

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

kettle holes ; soil cover evolution ; soil redistribution ; soil morphology ; soil chemical properties

Abstract:

The aim of the study was to identify and examine main directions of soil patterns, typology, SOC (Soil Organic Carbon) and Nt (Total Nitrogen) content in the topsoil changes that have occurred in kettle holes as an effect of soil erosion and anthropogenic denudation. Varied in the type of land use, three closed basins located in young glacial landscape in north-western Poland were investigated. According to the type of land use, the total area of soils with untransformed or moderately transformed morphology is different. Significant modifications have been taking place not only in mineral soils, which are located on slopes, but especially in soils of the bottom of sedimentary basins. In fact, most of primary soil properties and morphology have been replaced by new characteristics. The most intensive modifications of soil morphology and soil chemical properties occurs within croplands. Total area of colluvial soils can be treated as indicator of soil erosion processes intensity.

References:

1. BAUŽIENĖ I., ŚWITONIAK M., CHARZYŃSKI P., 2008. Properties of deluvial soils in Poland and Lithuania and propositions of their classification. Žemės Ûkio Mokslai, vol. 15, no. 3, pp. 29-35.
2. Borówka R.K., 1992. Przebieg i rozmiary denudacji w obrębie śródwysoczyznowych basenów sedymentacyjnych podczas późnego vistulianu i holocenu, ser. Geografia, vol. 54, Poznań: Wydawnictwo Naukowe UAM.
3. Bouyoucos G.M., 1951. Particle analysis by hydrometer method. Agronomy Journal, no. 43, pp. 434-438.7.
http://dx.doi.org/10.2134/agronj1951.00021962004300090005x -
4. Chodak T., Kaszubkiewicz J., Tasz W., 2005. Skład granulometryczny i zawartość makroskładników w materiale glebowym zmywanym w wyniku erozji powierzchniowej. Acta Agrophysica, vol. 5, no. 3, pp. 577-587.
5. Corti G., Cocco S., Basili M., Cioci C., Warburton J., Agnelli A., 2012. Soil formation in kettle holes from high altitudes in central Apennines, Italy. Geoderma, vol. 170, pp. 280-294.
http://dx.doi.org/10.1016/j.geoderma.2011.10.016 -
6. De Alba S., Lindstrom M.J., Schumacher T.E., Malo D.D., 2004. Soil landscape evolution due to soil redistribution by tillage: A new conceptual model of soil catena evolution in agricultural landscapes. Catena, vol. 58, no. 1, pp. 77-100.
http://dx.doi.org/10.1016/j.catena.2003.12.004 -
7. De Ploey J., 1985. The origin of modern and old colluvium in the light of a colluviation model [in:] M. Van Molle, L. Peeters (eds.), Recent trends in physical geography in Belgium. Study series of the Vrije Universiteit Brussel, New Series, vol. 20, pp. 157-171.
8. Drwal J., 1975. Zagadnienia bezodpływowości na obszarach młodoglacjalnych. Zeszyty Naukowe Wydziału Biologii i Nauk o Ziemi, ser. Geografia, vol. 3, pp. 7-26.
9. Frielinghaus M., Vahrson W.-G., 1998. Soil translocation by water erosion from agricultural cropland into wet depressions (morainic kettle holes). Soil and Tillage Research, vol. 46, no. 1-2, pp. 23-30.
http://dx.doi.org/10.1016/S0167-1987(98)80104-9 -
10. GAUDIG G., COUWENBERG J., JOOSTEN H., 2006. Peat accumulation in kettle holes: bottom up or top down? Mires and Peat, no. 1, pp. 1-16.
11. Gerke H., Koszinski S., Kalettka T., Sommer M., 2010. Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach. Journal of Hydrology, vol. 393, no. 1-2, pp. 123-132.
http://dx.doi.org/10.1016/j.jhydrol.2009.12.047 -
12. FAO, 2006. Guidelines for Soil Description. Rome: Food and Agriculture Organization of the United Nations.
13. Govers G., Vandaele K., Desmet P., Poesen J., Bunte K., 1994. The role of tillage in soil redistribution on hillslopes. European Journal of Soil Science, vol. 45, no. 4, pp. 469-478.
http://dx.doi.org/10.1111/j.1365-2389.1994.tb00532.x -
14. Gregorich E.G., Greer K.J., Anderson D.W., Liang B.C., 1998. Carbon distribution and losses: erosion and deposition effects. Soil and Tillage Research, vol. 47, no. 3-4, pp. 291-302.
http://dx.doi.org/10.1016/S0167-1987(98)00117-2 -
15. Heckrath G., Djurhuus J., Quine T.A., Van Oost K., Govers G., Zhang Y., 2005. Tillage erosion and its effect on soil properties and crop yield in Denmark. Journal of Environmental Quality, vol. 34, no. 1, pp. 312-324.
16. Hulisz P., Karasiewicz M.T., Dąbrowski M., Michalski M., 2012. Zmiany fizykochemicznych i chemicznych właściwości osadów w odniesieniu do etapów rozwoju zagłębienia w rezerwacie Retno [in:] M.T. Karasiewicz, P. Hulisz, M. Świtoniak (eds.), Postglacjalna historia zagłębienia bezodpływowego w rezerwacie Retno (Pojezierze Brodnickie), Toruń: Wydawnictwo Naukowe UMK, pp. 131-143.
17. IUSS Working Group WRB, 2015. World reference base for soil resources 2014. World Soil Resources Report No. 106, Rome: FAO.
18. Karasiewicz M.T., Hulisz P., Noryśkiewicz A.M., Krześlak I., Świtoniak M., 2014. The record of hydroclimatic changes in the sediments of a kettle-hole in a young glacial landscape (north-central Poland). Quaternary International, vol. 328-329, pp. 264-276.
http://dx.doi.org/10.1016/j.quaint.2013.09.045 -
19. Kobierski M., 2013. Morfologia, właściwości oraz skład mineralny gleb płowych zerodowanych w wybranych obszarach morenowych województwa kujawsko-pomorskiego, ser. Rozprawy, 166, Bydgoszcz: Uniwersytet Technologiczno--Przyrodniczy.
20. Kochanowska R., Pienkowski P., Wolejko L., 1998. Characteristics of intrafield water holes in Western Pomerania in relation to differentiation of the young-glacial landscape and human impact. Journal of Water and Land Development, vol. 2, pp. 85-101.
21. Kosmas C., Gerontidis St., Marathianou M., Detsis B., Zafiriou Th., NAN MUYSEN W., GOVERS G., QUINE T., VANOOST K., 2001. The effect of tillage displaced soil on soil properties and wheat biomass. Soil and Tillage Research, vol. 58, no. 1-2, pp. 31-44.
http://dx.doi.org/10.1016/S0167-1987(00)00175-6 -
22. LAL R., 2003. Soil erosion and global carbon budget. Environment International, vol. 29, no. 4, pp. 437-450.
http://dx.doi.org/10.1016/S0160-4120(02)00192-7 -
23. LAL R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, vol. 304, no. 5677, pp. 1623-1627.
http://dx.doi.org/10.1126/science.1097396 -
24. Lemkowska B., Sowiński P., 2009. Mikroelementy w glebach obniżeń pojeziornych Pojezierza Olsztyńskiego. Zeszyty Problemowe Postępów Nauk Rolniczych, vol. 540, pp. 237-245.
25. Lewandowski J., Nita M., 2008. Ewolucja systemu hydrograficznego i szaty roślinnej dorzecza górnej Piławy i górnej Drawy (Pomorze Środkowe). Przegląd Geologiczny, vol. 56, no. 5, pp. 380-390.
26. Li S., Lobb D.A., Tiessen K.H.D., 2009. Modeling tillage-induced morphological features in cultivated landscapes. Soil and Tillage Research, vol. 103, no. 1, pp. 33-45.
http://dx.doi.org/10.1016/j.still.2008.09.005 -
27. Lindstrom M.J., Nelson W.W., Schumacher T.E., 1992. Quantifying tillage erosion rates due to moldboard plowing. Soil and Tillage Research, vol. 24, no. 3, pp. 243-255.
http://dx.doi.org/10.1016/0167-1987(92)90090-X -
28. Lobb D.A., Kachanoski R.G., Miller M.H., 1995. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Canadian Journal of Soil Science, vol. 75, no. 2, pp. 211-218.
http://dx.doi.org/10.4141/cjss95-029 -
29. Mahaney W.C., Sanmugadas K., 1989. Late-Holocene soil toposequence in Stroud Basin, Central Wind River Mountains, western Wyoming. Geografisk Tidsskrift, vol. 89, pp. 58-65.
30. Major M., 2010. Charakter i funkcjonowanie zagłębień bezodpływowych w krajobrazie strefy młodoglacjalnej (Pomorze Zachodnie, górna Parsęta). Poznań: Poznańskie Towarzystwo Przyjaciół Nauk.
31. Major M., 2008. Morphometric differences among basins without outlets in the southern and central parts of the Parsęta catchment. Limnological Review, vol. 8, no. 1-2, pp. 43-49.
32. Marcinek J., Komisarek J., 2004. Antropogeniczne przekształcenia gleb Pojezierza Poznańskiego na skutek intensywnego użytkowania rolniczego. Poznań: Wydawnictwo Akademii Rolniczej.
33. Martinez C., Hancock G.R., Kalma J.D., 2010. Relationships between 137Cs and soil organic carbon (SOC) in cultivated and never-cultivated soils: An Australian example. Geoderma, vol. 158, no. 3-4, pp. 137-147.
http://dx.doi.org/10.1016/j.geoderma.2010.04.019 -
34. Mendyk Ł., Markiewicz M., Bednarek R., Świtoniak M., Gamrat W.W., Krześlak I., Sykuła M., Gersztyn L., Kupniewska A., 2015. Environmental changes of a shallow kettle lake catchment in a young glacial landscape (Sumowskie Lake catchment), North-Central Poland. Quaternary International (in press).
http://dx.doi.org/10.1016/j.quaint.2015.10.008 -
35. Nichol D., 2001. Environmental changes within kettle holes at Borras Bog triggered by construction of the A5156 Llanypwll Link Road, North Wales. Engineering Geology, vol. 59, no. 1-2, pp. 73-82.
http://dx.doi.org/10.1016/S0013-7952(00)00065-X -
36. Nita M., 2006. Wyniki analizy pyłkowej osadów organicznych. Szczegółowa mapa geologiczna Polski 1:50 000, ark. Czaplinek (196). Warszawa: Centralne Archiwum Geologiczne Państwowego Instytutu Geologicznego.
37. Orzechowski M., Smólczyński S., Sowiński P., 2004. Przekształcenia antropogeniczne gleb obniżeń śródmorenowych Pojezierza Mazurskiego. Roczniki Gleboznawcze, vol. 55, no. 2, pp. 311-320.
38. Paluszek J., 2010. Zmiany pokrywy glebowej pod wpływem erozji. Prace i Studia Geograficzne, vol. 45, pp. 279-294.
39. Papiernik S.K., Lindstrom M.J., Schumacher T.E., Schumacher J.A., Malo D.D., Lobb D.A., 2007. Characterization of soil profiles in a landscape affected by long-term tillage. Soil and Tillage Research, vol. 93, no. 2, pp. 335-345.
http://dx.doi.org/10.1016/j.still.2006.05.007 -
40. Piaścik H., Sowiński P., Orzechowski M., Smólczyński S., 2001. Sekwencja gleb obniżeń śródmorenowych w krajobrazie młodoglacjalnym Pojezierza Mazurskiego. Zeszyty Problemowe Postępów Nauk Rolniczych, vol. 476, pp. 491-496.
41. Podlasiński M., 2013. Wpływ denudacji antropogenicznej na zróżnicowanie pokrywy glebowej i jej przestrzenną strukturę w rolniczym krajobrazie morenowym. Szczecin: Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego.
42. Polyakov V., Lal R., 2004. Modeling soil organic matter dynamics as affected by soil water erosion. Environment International, vol. 30, no. 4, pp. 547-556.
http://dx.doi.org/10.1016/j.envint.2003.10.011 -
43. Przewoźna B., 2014. Change of bulk density, air-water properties and morphology of soils in basins without outlets as an effect of erosion and anthropogenic denudation (a study from northwestern Poland). Soil Science and Plant Nutrition, vol. 60, no. 1, pp. 30-37.
http://dx.doi.org/10.1080/00380768.2013.842456 -
44. Ritchie J.C., Mccarty G.W., Venteris E.R., Kaspar T.C., 2007. Soil and soil organic carbon redistribution on the landscape. Geomorphology, vol. 89, pp. 163-171.
http://dx.doi.org/10.1016/j.geomorph.2006.07.021 -
45. Rodzik J., Mroczek P., Wiśniewski T., 2014. Pedological analysis as a key for reconstructing primary loess relief – A case study from the Magdalenian site in Klementowice (eastern Poland). Catena, vol. 117, pp. 50-59.
http://dx.doi.org/10.1016/j.catena.2013.09.001 -
46. Quine T.A., Walling D.E., Chakela Q.K., Mandiringana O.T., Zhang X., 1999. Rates and patterns of tillage and water erosion on terraces and contour strips: evidence from caesium-137 measurements. Catena, vol. 36, no. 1-2, pp. 115-142.
http://dx.doi.org/10.1016/S0341-8162(99)00006-5 -
47. Schumacher T.E., Lindstrom M.J., Schumacher J.A., Lemme G.D., 1999. Modeling spatial variation in productivity due to tillage and water erosion. Soil and Tillage Research, vol. 51, no. 3-4, pp. 331-339.
http://dx.doi.org/10.1016/S0167-1987(99)00046-X -
48. Sinkiewicz M., 1998. Rozwój denudacji antropogenicznej w środkowej części Polski Północnej. Toruń: Wydawnictwo UMK.
49. Smolska E., 2005. Znaczenie spłukiwania w modelowaniu stoków młodoglacjalnych (na przykładzie Pojezierza Suwalskiego). Warszawa: Wydział Geografii i Studiów Regionalnych UW.
50. SMOLSKA E., 2008. Badania sedymentologiczne współczesnych osadów deluwialnych i ich znaczenie w ocenie procesów dynamiki procesów erozji gleby na przykładzie Pojezierza Suwalskiego. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, vol. 17, no. 2(40), pp. 202-212.
51. Sowiński P., Smólczyński S., Orzechowski M., 2004. Wpływ rolniczego użytkowania na właściwości fizyczno-wodne gleb w katenie moreny dennej Pojezierza Mazurskiego. Annales UMCS, Sec. E, Agricultura, vol. 59, no. 3, pp. 1057-1064.
52. Sowiński P., Lemkowska B., 2009. Toposequence and soil properties in the landscape of ground moraine of Olsztyn Lakeland [in:] B. Bieniek (ed.), Soils of chosen landscapes. Olsztyn: University of Warmia and Mazury, pp. 21-36.
53. Sowiński P., Lemkowska B., 2010. Makroskładniki w glebach obniżeń pojeziernych na Pojezierzu Olsztyńskim. Roczniki Gleboznawcze, vol. 61, no. 2, pp. 87-94.
54. Stasik R., Szafrański C., 2005. Zmiany w pokrywie glebowej erodowanych terenów Pojezierza Gnieźnieńskiego. Acta Agrophysica, vol. 5, no. 2, pp. 447-454.
55. Su Z.A., Zhang J.H., Qin F.C., Nie X.J., 2012. Landform change due to soil redistribution by intense tillage based on high-resolution DEMs. Geomorphology, vol. 175-176, pp. 190-198.
http://dx.doi.org/10.1016/j.geomorph.2012.07.009 -
56. Szpikowski J., 2003. Contemporary processes of soil erosion and the transformation of the morphology of slopes in agricultural use in the postglacial catchment of the Chwalimski Potok (upper Parseta, Drawskie Lakeland). Quaestiones Geographicae, vol. 22, pp. 79-90.
57. Szrejder B., 1998. Niektóre właściwości i pozycja systematyczna gleb powstałych w wyniku denudacji antropogenicznej w Koniczynce na Wysoczyźnie Chełmińskiej. Zeszyty Problemowe Postępów Nauk Rolniczych, vol. 460, pp. 499-511.
58. Świtoniak M., 2011. Przekształcenia pokrywy glebowej obszarów wysoczyznowych Pojezierza Brodnickiego w wyniku oddziaływania denudacji antropogenicznej [in:] M. Jankowski (ed.), Wybrane problemy genezy, systematyki i ochrony gleb regionu kujawsko-pomorskiego. Wrocław-Warszawa: PTSH, PTG.
59. Świtoniak M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena, vol. 116, pp. 173-184.
http://dx.doi.org/10.1016/j.catena.2013.12.015 -
60. Świtoniak M., 2015. Issues relating to classification of colluvial soils in young morainic areas (Chełmno and Brodnica Lake District, northern Poland). Soil Science Annual, vol. 66, no. 2, pp. 57-66.
http://dx.doi.org/10.1515/ssa-2015-0020 -
61. Świtoniak M., Mroczek P., Bednarek R., 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Districts (North Poland). Catena, vol. 137, pp. 583-595.
http://dx.doi.org/10.1016/j.catena.2014.09.005 -
62. Targulian V.O., Goryachkin S.V., 2004. Soil memory: Types of record, carriers, hierarchy and diversity. Revista Mexicana Ciencias Geológicas, vol. 21, no. 1, pp. 1-8.
63. Targulian V.O., Goryachkin S.V., 2011. Soil memory and environmental reconstructions. Eurasian Soil Science, vol. 44, no. 4, pp. 464-465.
http://dx.doi.org/10.1134/S1064229311040119 -
64. Thapa B.B., Cassel D.K., Garrity D.P., 1999. Assessment of tillage erosion rates on steepland Oxisols in the humid tropics using granite rocks. Soil and Tillage Research, vol. 51, no. 3-4, pp. 233-243.
http://dx.doi.org/10.1016/S0167-1987(99)00040-9 -
65. Tsara M., Gerontidis S., Marathianou M., Kosmas C., 2001. The long-term effect of tillage on soil displacement of hilly areas used for growing wheat in Greece. Soil Use and Management, vol. 17, no. 2, pp. 113-120.
http://dx.doi.org/10.1111/j.1475-2743.2001.tb00016.x -
66. Turkelboom F., Poesen J., Ohler I., Ongprasert S., 1999. Reassessment of tillage erosion rates by manual tillage on steep slopes in northern Thailand. Soil and Tillage Research, vol. 51, no. 3-4, pp. 245-259.
http://dx.doi.org/10.1016/S0167-1987(99)00041-0 -
67. Vandenbygaart A.J., Protz R., Tomlin A.D., Miller J.J., 1999. Tillage system effects on nearsurface soil morphology: observations from the landscape to micro-scale in silt loam of southwestern Ontario. Soil and Tillage Research, vol. 51, no. 1-2, pp. 139-149.
http://dx.doi.org/10.1016/S0167-1987(99)00050-1 -
68. Vandenbygaart A.J., 2001. Erosion and deposition history derived by depth-stratigraphy of Cs-137 and soil organic carbon. Soil and Tillage Research, vol. 61, no. 3-4, pp. 187-192.
http://dx.doi.org/10.1016/S0167-1987(01)00203-3 -
69. Van Muysen W., Govers G., Bergkamp G., Roxo M., Poesen J., 1999. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil and Tillage Research, vol. 51, no. 3-4, pp. 303-316.
http://dx.doi.org/10.1016/S0167-1987(99)00044-6 -
70. Van Muysen W., Govers G., Van Oost K., Van Rompaey A., 2000. The effect of tillage depth, tillage speed, and soil condition on chisel tillage erosivity. Journal of Soil and Water Conservation, vol. 55, no. 3, pp. 355-364.
71. Van Muysen W., Govers G., 2002. Soil displacement and tillage erosion during secondary tillage operations: the case of rotary harrow and seeding equipment. Soil and Tillage Research, vol. 65, no. 2, pp. 185-191.
http://dx.doi.org/10.1016/S0167-1987(01)00284-7 -
72. Van Muysen W., Van Oost K., Govers G., 2006. Soil translocation resulting from multiple passes of tillage under normal field operating conditions. Soil and Tillage Research, vol. 87, no. 2, pp. 218-230.
http://dx.doi.org/10.1016/j.still.2005.04.011 -
73. Van Oost K., Van Muysen W., Govers G., Deckers J., Quine T.A., 2005. From water to tillage erosion dominated landform evolution. Geomorphology, vol. 72, no. 1-4, pp. 193-203.
http://dx.doi.org/10.1016/j.geomorph.2005.05.010 -
74. Vieira D.A.N., Dabney S.M., 2011. Modeling edge effects of tillage erosion. Soil and Tillage Research, vol. 111, no. 2, pp. 197-207.
http://dx.doi.org/10.1016/j.still.2010.10.007 -
75. Zhang J., Quine T.A., Ni S., Ge F., 2006. Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion. Global Change Biology, vol. 12, no. 10, pp. 1834-1841.
http://dx.doi.org/10.1111/j.1365-2486.2006.01206.x -
76. Zhang J.H., Nie X.J., Su Z.A., 2008. Soil profile properties in relation to soil redistribution by intense tillage on a steep hillslope. Soil Science Society of America Journal, vol. 72, no. 6, pp. 1767-1773.
http://dx.doi.org/10.2136/sssaj2007.0228 -

Relation:

Geographia Polonica

Volume:

89

Issue:

3

Start page:

323

End page:

343

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 1,5 MB ; application/pdf

Resource Identifier:

0016-7282 ; 10.7163/GPol.0060

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Rights:

Creative Commons Attribution BY-SA 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-SA 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-SA 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: