Object structure
Title:

Stratygrafia radarowa – metoda analizy danych georadarowych 3D w badaniu środowisk sedymentacyjnych na przykładzie osadów rzecznych = Radar stratigraphy – a method for analysing 3D GPR data in sedimentary environments as exemplified by fluvial sediments

Subtitle:

Przegląd Geograficzny T. 87 z. 3 (2015)

Creator:

Żuk, Tomasz ; Sambrook Smith, Gregory H.

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2015

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

radar stratigraphy ; ground penetrating radar ; sedimentary architecture ; facial models

Abstract:

Stratygrafia radarowa jest metodą interpretacji danych georadarowych zebranych na potrzeby badania budowy osadów klastycznych. Jej zastosowanie umożliwia przeprowadzenie obiektywnej interpretacji danych i prezentację wyników w sposób ilościowy. Metoda ta dostarcza informacji na temat architektury osadów o wysokiej rozdzielczości (rzędu decymetrów), które pozwalają na wyciągnięcie wniosków na temat procesów przebiegających w chwili depozycji. Ponieważ budowa osadów ma nieodłącznie charakter przestrzenny, ważną zaletą stratygrafii radarowej jest możliwość dokonania klasyfikacji i interpretacji środowiskowej facji na podstawie danych trójwymiarowych. Takie dane dostarczają wysokorozdzielczych informacji na temat cyklicznych procesów erozji i depozycji, nieosiągalnych za pomocą tradycyjnych metod, takich jak wiercenia, płytkie wkopy czy odsłonięcia. Autorzy zwięźle prezentują historię i założenia stratygrafii radarowej oraz na przykładzie ze środowiska rzecznego demonstrują zalety zastosowania jej do danych 3D w procesie interpretacji rozkładu facji osadowych.

References:

1. Adetunji A.Q., Al-Shuhail A., Korvin G., 2008, Mapping the internal structure of sand dunes with GPR: A case history from the Jafurah sand sea of eastern Saudi Arabia, Leading Edge, 27, s. 1446-1452.
2. Asprion U., Aigner T., 1999, Towards realistic aquifer models; three dimensional georadar surveys of Quaternary gravel deltas (Singen basin, SW Germany), Sedimentary Geology, 129, s. 281-297.
3. Beres M., Haeni F.P., 1991, Application of ground-penetrating-radar methods in hydrogeologic studies, Ground Water, 29, s. 375-386.
4. Beres M., Green A.G., Huggenberger P., Horstmeyer H., 1995, Mapping the architecture of glaciofluvial sediments with three-dimensional georadar, Geology, 23, s. 1087-1090.
5. Beres M., Huggeberger P., Green A.G., Horstmeyer H., 1999, Using two- and three-dimensional georadar methods to characterize glaciofluvial architecture, Sedimentary Geology, 129, s. 1-24.
6. Best J.L., Ashworth P.J., Bristow C.S., Roden J., 2003, Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh, Journal of Sedimentary Research, 73, s. 516-530.
7. Best J.L., Woodward J., Ashworth P.J., Sambrook Smith G.H., Simpson C.J., 2006, Bar-top hollows: A new element in the architecture of sandy braided rivers, Sedimentary Geology, 190, s. 241-255.
8. Bridge J.S., Alexander J., Collier R.E.L.L., Gawthorpe R.L., Jarvis J., 1995, Ground-penetrating radar and coring used to study the large-scale structure of point-bar deposits in three dimensions. Sedimentology, 42, s. 839-852.
9. Bridge J.S., Collier R., Alexander J., 1998, Large-scale structure of Calamus River deposits (Nebraska, USA) revealed using ground-penetrating radar, Sedimentology, 45, s. 977-986.
11. Bristow C.S., Augustinus P.C., Wallis I.C., Jol H.M., Rhodes E.J., 2010, Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL, with implications for GPR on Mars, Earth and Planetary Science Letters 289, s. 30-42.
12. Bristow C.S., Best J.L., Ashworth P.J., 2000, The use of GPR in developing a facies model for a large sandy braided river, Brahmaputra River, Bangladesh, [w:] Proceedings of the Eighth International Conference on Ground Penetrating Radar, Gold Coast, Australia, Society of Photo-optical Instrumentation Engineers Proceedings Series, 4084, s. 95-100.
http://dx.doi.org/10.1117/12.383543 -
13. Bristow C.S., Lancaster N., Duller G.A.T., 2005, Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia, Journal of the Geological Society, 162, s. 315-322.
14. Bristow C.S., Skelly R.L., Etheridge F.G., 1999, Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise, Sedimentology, 46, s. 1029-1047.
15. Brown A.R., 2004, Interpretation of three-dimensional seismic data, Memoir of the American Association of Petroleum Geologists and the Society of Exploration Geophysicists, Tulsa, Oklahoma, USA.
16. Buynevich I.V., FitzGerald D.M., 2003, High-Resolution Subsurface (GPR) Imaging and Sedimentology of Coastal Ponds, Maine, U.S.A.: Implications for Holocene Back-Barrier Evolution, Journal of Sedimentary Research, 73, s. 559-571.
17. Buynevich I.V., FitzGerald D.M., van Heteren S., 2004, Sedimentary records of intense storms in Holocene barrier sequences, Maine, USA, Marine Geology, 210, s. 135-148.
18. Buynevich I., Bitinas A., Pupienis D., 2007, Reactivation of coastal dunes documented by subsurface imaging of the Great Dune Ridge, Lithuania, Journal of Coastal Research, 50, s. 226-230.
19. Buynevich I.V., Jol H.M., FitzGerald D.M., 2009, Coastal environments, [w:] H.M. Jol (red.), GPR: Radar Theory and Applications, Elsevier, Amsterdam, s. 299-322.
20. Corbeanu R.M., McMechan G.A., Szerbiak R.B., Soegaard K., 2002, Prediction of 3-D fluid permeability and mudstone distributions from ground-penetrating radar (GPR) attributes: examples from the Cretaceous Ferron Sandstone Member, east-central Utah, Geophysics, 67, s. 1495-1504.
21. Coll M., López-Blanco M., Queralt P., Ledo J., Marcuello A., 2013, Architectural characterization of a delta-front reservoir analogue combining ground penetrating radar and electrical resistivity tomography: Roda Sandstone (Lower Eocene, Graus-Tremp basin, Spain), Geologica Acta, 11, s. 27-43.
22. Czuryłowicz K., Lejzerowicz A., Kowalczyk S., Wysocka A., 2014, The origin and depositional architecture of Paleogene quartz-glauconite sands in the Lubartów area, eastern Poland, Geological Quarterly, 58, s. 125-144.
23. El Said M.A.H., 1956, Geophysical prospection of underground water in the desert by means of electromagnetic fringes, Proceedings of the IRE, 44, s. 2-30.
24. Gawthorpe R.L., Collier R.E.L., Alexander J., Leeder M., Bridge J.S., 1993, Ground penetrating radar, application to sand body geometry and heterogeneity studies, Geological Society of London Special Publication, 73, s. 421-432.
25. González-Villanueva R., Costas S., Duarte H., Pérez-Arlucea M., Alejo I., 2011, Blowout evolution in a coastal dune: using GPR, aerial imagery and core records, Journal of Coastal Research, 64, s. 278-282.
26. Heinz J., Aigner T., 2003, Three-dimensional GPR analysis of various Quaternary gravel-bed braided river deposits (southwestern Germany), Geological Society of London Special Publication, 211, s. 99-110.
27. Hickin A.S., Kerr B., Barchyn T.E., Paulen R.C., 2009, Using ground-penetrating radar and capacitively coupled resistivity to investigate 3-D fluvial architecture and grain-size distribution of a gravel floodplain in Northeast British Columbia, Canada, Journal of Sedimentary Research, 79, s. 457-477.
28. Huggenberger P., 1993, Radar facies: recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, NE Switzerland, Geological Society of London Special Publication, 75, s. 163-176.
29. Jol H.M., Bristow C.S., Smith D.G., Junk M.B., Putnam P., 2003, Stratigraphic imaging of the Navajo sandstone using ground-penetrating radar, Leading Edge, 29, s. 882-887.
30. Kocurek G., 1996. Desert aeolian systems, [w:] H.G. Reading (red.), Sedimentary Environments: Processes, Facies and Stratigraphy, Blackwell Science, Oxford, s. 125-153.
31. Lamparski P., 2004, Formy i osady czwartorzędowe w świetle badań georadarowych, Prace Geograficzne, IGiPZ PAN, 194, Warszawa.
32. Lunt I.A., Bridge J.S., Tye R.S., 2004, A quantitative, three-dimensional depositional model of gravelly braided rivers, Sedimentology, 51, s. 377-414.
33. Lejzerowicz A., Kowalczyk S., Wysocka A., 2014, The usefulness of ground-penetrating radar images for the research of a large sand-bed braided river: case study from the Vistula River (central Poland), Geologos, 2, s. 35-47.
34. McMechan G.A., Gaynor G.C., Szerbiak R.B., 1997, Use of ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs, Geophysics, 62, s. 786-796.
35. Miall A.D., 1977, A review of the braided-river depositional environment, Earth-Science Review, 13, s. 1-62.
36. Mitchum J.R., Vail P.R., Sangree J.R., 1977, Seismic stratigraphy and global changes of sea level. Part 6: Stratigraphic interpretation of seismic reflection pattern, [w:] C.E. Payton (red.), Seismic Stratigraphy – Applications to Hydrocarbon Exploration, American Association of Petroleum Geologists Memoir, 26, s. 117-133.
37. Neal A., 2004, Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-science reviews, 66, s. 261-330.
38. Neal A., Grasmueck M., McNeil D., Viggiano D.A., Eberli G.P., 2008, Full-resolution 3D radar stratigraphy of complex oolitic sedimentary architecture: Miami Limestone, Florida, USA, Journal of Sedimentary Research, 78, s. 638-653.
39. Olszak J., Karczewski J., 2008, Przydatność profilowań georadarowych w interpretacji budowy tarasów rzecznych (dolina Kamienicy, polskie Karpaty zewnętrzne), Przegląd Geologiczny, 56, s. 330-334.
40. Peretti W.R., Knoll M.D., Clement W.P., Barrash W., 1999, 3-D GPR imaging of complex fluvial stratigraphy at the Boise hydrogeophysical research site, [w:] Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP99 – Oakland, CA), Environmental and Engineering Geophysical Society, Wheat Ridge, s. 555-564.
41. Reynolds J.M., 2011, An Introduction to Applied and Environmental Geophysics, John Wiley & Sons, Chichester.
42. Sambrook Smith G.H., Ashworth P.J., Best J.L., Woodward J., Simpson C.J., 2006, The sedimentology and alluvial architecture of the sandy braided South Saskatchewan River, Canada, Sedimentology, 53, s. 413-434.
43. Sloss L.L., Krumbein W.C., Dapples E.C., 1949, Integrated facies analysis, [w:] C.R. Longwell (red.), Sedimentary Facies in Geologic History, Memoir of the Geological Society of America, 39, s. 91-123.
44. Vail P.R., Mitchum R.M., Thompson S., 1977, Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap, [w:] C.E. Payton (red.), Seismic Stratigraphy – Applications to Hydrocarbon Exploration, American Association of Petroleum Geologists Memoir, 26, s. 63-82.
45. Van Dam R.L., 2001, Causes of Ground-penetrating Radar Reflections in Sediment, PhD thesis, Vrije Universiteit, Faculty of Earth Sciences.
46. van Heteren S., FitzGerald D.M., McKinaly P.A., Buynevich I.V., 1998, Radar facies of paraglacial barrier systems: Coastal New England, USA, Sedimentology, 45, s. 181-200.
47. Widess M.B., 1973, How thin is a thin bed? Geophysics, 38, s. 1176-1180.
48. Zieliński T., 1995, Kod litofacjalny i litogenetyczny – konstrukcja i zastosowanie, [w:] E. Mycielska-Dowgiałło, J. Rutkowski (red.), Badania osadów czwartorzędowych. Wybrane metody i interpretacja wyników, Wydawnictwo UW, Warszawa, s. 220-235.

Relation:

Przegląd Geograficzny

Volume:

87

Issue:

3

Start page:

439

End page:

456

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 1 MB ; application/pdf

Resource Identifier:

0033-2143 ; 10.7163/PrzG.2015.3.2

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY-ND 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-ND 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-ND 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: