Metadata language
Przegląd Geograficzny T. 81 z. 1 (2009)
Creator:Gądek, Bogdan ; Kędzia, Stanisław
Publisher: Place of publishing: Date issued/created: Description: Type of object: Subject and Keywords:permafrost ; ground surface tempeature ; BTS method ; Tatra Mountains
Abstract:This paper presents the results of winter monitoring of ground surface temperature in the alpine zone of the Tatra Mountains, at sites where earlier studies had documented the presence or absence of permafrost. This made it possible to test the usefulness of the BTS method in permafrost mapping, and to take up the discussion on possibilities for its contemporary development. The data obtained reveal that the thermal regime of ground surface beneath snow cover cannot serve as an indicator of permafrost occurrence. The regime is first and foremost connected with snow cover development and may change from year to year. Both places of permafrost occurrence and permafrost-free sites may feature three basic types of ground surface winter thermal regimes, i.e.: (1) short-term ground-surface temperature (i.e. GST) fluctuations throughout the winter, (2) shortterm GST fluctuations at the beginning of winter only, and (3) a lack of short-term GST fluctuation during the whole period of occurrence of dry snow cover. However, places contemporarily maintaining permafrost were markedly colder than others. At the end of winters 2003/04 and 2004/05, temperatures beneath thick snow cover (conventional BTS) were no higher than –5°C, as compared with lowest BTS values of –3°C where permafrost was absent. Snow cover did not protect the ground from freezing, however, according to its thickness and density and the amount of heat in the ground there were decreased amplitudes and extended reaction times of GST to changes in air temperature. Even in the case of snow cover remaining several meters thick for several months, it was possible to record a slow decrease in bottom temperature until a minimum value was reached at the end of winter. In the light of the obtained data, contemporary permafrost in the alpine zone of the Tatra Mountains can be said to develop under both thick and thin snow cover, its existence therefore probably being more related to local circulation of cold air over the surface and low solar irradiation than to altitude and snow cover development.
References:
1. Brenning A., Gruber S., Hoelzle M., 2005, Sampling and statistical analyses of BTS measurements, Permafrost and Periglacial Processes, 16, 4, s. 383–393.
2. Delaloye R., Lambiel Ch., 2005, Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps), Norsk Geografisk Tidsskrift, 59, 2, s. 194–203.
3. Dobiński W., 1996, Wyniki pomiarów temperatury u spodu zimowej pokrywy śnieżnej – BTS – w Dolinie Pięciu Stawów Polskich i okolicy, Geographia. Studia et Dissertationes, 20, s. 15–22.
4. Dobiński W., 1997, Warunki występowania zmarzliny w alpejskim piętrze Tatr Wysokich. Wydział Nauk o Ziemi, Uniwersytet Śląski, Sosnowiec, maszynopis
5. Dobiński W., 2004, Wieloletnia zmarzlina w Tatrach: geneza, cechy, ewolucja, Przegląd Geograficzny, 76, 3, s. 327–343.
6. Dobiński W., Gądek B., Żogała B., 1996, Wyniki geoelektrycznych badań osadów czwartorzędowych w piętrze alpejskim Tatr Wysokich, Przegląd Geologiczny, 44, 3, s. 259–261.
7. Gądek B., Kotarba A., 2003, Kopalny lód lodowcowy w Tatrach?, Przegląd Geologiczny, 51, 7, s. 571.
8. Gądek B., Żogała B., 2005, Występowanie kopalnego lodu w Miedzianej Kotlinie (Tatry Wysokie w świetle danych elektrooporowych, [w:] A. Kotarba, K. Krzemień, J. Święchowicz (red.), VII Zjazd Geomorfologów Polskich, Współczesna ewolucja rzeźby Polski, Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków, s. 555–560.
9. Gądek B., Rączkowska Z., Wzientek K., Żogała B., 2006, Wieloletnia zmarzlina Miedzianej Kotliny (Tatry Słowackie) w świetle wyników badań geofizycznych i geomorfologicznych, [w:] A. Kotarba, W. Borowiec (red.), Tatrzański Park Narodowy na tle innych górskich terenów chronionych, T. 1. Nauki o Ziemi, Materiały III Ogólnopolskiej Konferencji Przyroda Tatrzańskiego Parku Narodowego a Człowiek, PTPNoZ-TPN, Zakopane-Kraków, s. 100–108.
10. Genxu W., Yuanshou L., Yibo W., Qingbo W., 2008, Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai–Tibet Plateau, China, Geoderma, 143, 1-2, s. 143–152.
11. Gude M., Barsch D., 2005, Assessment of geomorphic hazards in connection with permafrost occurrence in the Zugspitze area (Bavarian Alps, Germany), Geomorphology, 66, 1–4, s. 85–93.
12. Haeberli W., 1973, Die Basis Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen, Zeitschrift für Gletscherkunde und Glazialgeologie, 9, 1–2, s. 221–227.
13. Haeberli W., 1978, Special aspects of high mountain permafrost methodology and zonation in the Alps, [w:] Proceedings of the Third International Conference on Permafrost, Edmonton, Canada, National Research Council of Canada, Ottawa, s. 378–384.
14. Hinzman L.D., Kane D.L., Yoshikawa K., Carr A., Bolton W.R., Fraver M., 2003, Hydrological variations among watersheds with varying degrees of permafrost, [w:] Proceedings of the VII International Permafrost Conference, Switzerland, July 21–25, 2003, Taylor and Francis Group plc, London, s. 407–411.
15. Hoelzle M., Haeberli W., Keller F., 1993, Aplication of BTS measurements for modelling mountain permafrost distribution, [w:] Sixth International Conference on Permafrost. Proceedings, 1, Beijing, China, s. 272–277, maszynopis powielony.
16. Hoelzle M., Wegmann M., Krummenacher B., 1999, Miniature temperature dataloggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps, Permafrost and Periglacial Processes, 10, 2, s. 113–124.
17. Ishikawa M., 2003, Thermal regimes at the snow-ground interface and their implications for permafrost investigation, Geomorphology, 52, 1–2, s. 105–120.
18. Ishikawa M., Hirakawa K., 2000, Mountain permafrost distribution based on BTS measurements and DC resistivity soundings in the Daisetsu Mountains, Hokkaido, Japan, Permafrost and Periglacial Processes, 11, 2, s. 109–123.
19. Jorgenson M.T., Racine C.H., Walters J.C., Osterkamp T.E., 2001, Permafrost degradation and ecological changes associated with a warming climate in central Alaska, Climatic Change, 48, 4, s. 551–571.
20. Kędzia S., 2004, Klimatyczne i topograficzne uwarunkowania występowania wieloletniej zmarzliny w Tatrach Wysokich (na przykładzie Koziej Dolinki), Instytut Geografii i Przestrzennego Zagospodarowania PAN, Kraków, maszynopis.
21. Kędzia S., Mościcki J., Wróbel A., 1998, Studies on the occurrence of permafrost in Kozia Valley (The High Tatra Mts.), [w:] J. Repelewska-Pękalowa (red.), Relief, Quaternery Paleogeography and Changes of the Polar Environment. Polar Session, Uniwersytet Marii Curie-Słodowskiej, Lublin, s. 51–57.
22. Lamparski P., Kędzia S., 2007, Permafrost occurrence in Kozia Dolinka (High Tatra Mountains) in light of georadar investigations, Geomorphologia Slovaca, 7, 1, s. 82–88.
23. Lewkowicz A.G., Ednie M., 2004, Probability mapping of mountains permafrost using the BTS method, Wolf Creek, Yukon Territory, Canada, Permafrost and Periglacial Processes, 15, 1, s. 67–80.
24. Mościcki J., Kędzia S., 2001, Investigation of mountain permafrost in the Kozia Dolinka valley, Tatra Mountains, Poland, Norsk Geografisk Tidsskrift, 55, 4, s. 235–240.
25. Philips M., Schweizer J., 2007, Effect of mountain permafrost on snowpack stability, Cold Regions Science and Technology, 47, 1–2, s. 43–49.
26. Salzmann N., Nötzli J., Hauck C., Gruber S., Hölzle M., Haeberli W., 2007, Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results, Journal of Geophysical Research Earth Surface, 112, s. F02S12.
File size 1,9 MB ; application/pdf
Resource Identifier:0033-2143 ; 10.7163/PrzG.2009.4.3
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Language: Language of abstract: Rights: Terms of use:Copyright-protected material. May be used within the limits of statutory user freedoms
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Access: