Metadata language
The tree-ring growth responses to climate in the timberline ecotone of Babia Góra Mountain
Subtitle:Geographia Polonica Vol. 88 No. 2 (2015)
Creator:Kaczka, Ryszard J. ; Czajka, Barbara ; Łajczak, Adam
Publisher: Place of publishing: Date issued/created: Description: Type of object: Subject and Keywords:Babia Góra Mountain ; Carpathians ; climate ; dendrochronology ; Norway spruce ; tree-rings
Abstract:The growth/climate response of Norway spruce in the timberline ecotone of Babia Góra Mountain was examined. Based on a pool of 708 trees from 10 sites, the influence of age, exposure, and method of computingchronology, was assessed. Gridded data and 12 instrumental series were used to study the spatiotemporal relationship of the tree growth and climate. Temperature mainly controls the growth of the Norway spruce in thetimberline ecotone at Babia Góra Mountain. The most important factors were the June and July temperatures (r = 0.57) and of the entire growing season April-September (r = 0.52). The precipitation of late winter (Marchand correspondingly the January-March season) had a positive influence on the tree growth. The previously reported negative correlation with the summer precipitation was found but it was less important. The maturetrees growing on the northern slope showed a response to the summer temperature in a stronger manner than all the other groups. The low-frequency SPL chronologies (detrended using the cubic smoothing splinesmethod) performed better than the RCS (regional curve standardisation) of the high-frequency SPL. A strong correlation was found with Obidowa, the nearest located instrumental data (a distance of 35 km), and theHala Gąsienicowa, the station located at a similar elevation a.s.l. (1508 m a.s.l.), but also with the Krakow located farther away and at a lower elevation (237 m a.s.l.). The TRW/temperature correlation was temporallymost stable in the case of Zakopane.
References:
1. BEBI P., KULAKOWSKI D., RIXEN C., 2009. Snow avalanche disturbances in forest ecosystems – State of research and implications for management. Forest Ecology and Management, vol. 257, no. 9, pp. 1883-1892.
http://dx.doi.org/10.1016/j.foreco.2009.01.050 -
2. Bednarz Z., 1996. June-July temperature variation for the Babia Góra National Park, Southern Poland, for the period 1650-1910 [in:] B. Obrębska-Starklowa, T. Niedźwiedź (eds.), Proceedings of the International conference on climate dynamics and the global change perspective, Kraków, 17-20 październik 1995, Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Prace Geograficzne, 102, pp. 523-529.
3. Bednarz Z., Jaroszewicz B., Ptak J., Szwagrzyk J., 1999. Dendrochronology of Norway Spruce (Picea Abies (L. Karst) in the Babia Gora National Park, Poland. Dendrochronologia, 16, pp. 45-55.
4. BEDNARZ Z., HOLEKSA J., RÓŻAŃSKI W., SZWAGRZYK J., WILCZEK Z., ŻYWIEC M., 2009. Altitudinal ranges of forest and shrub communities in the Babia Góra Massif (West Carpathians) [in:] J. Holeksa, B. Babczyńska-Sendek, S. Wika (eds.), The role of geobotany in biodiversity conservation, Katowice: University of Silesia, pp. 71-80.
5. BEDNORZ F., 2000. Der Abbau der organischen Substanz im Waldgrenzökoton am Stillberg (Dischmatal/Schweiz). Arbeiten aus dem Institut für Landschaftsökologie 7, Münster: Institut für Landschaftsökologie.
6. Briffa K.R., Schweingruber F.H., Jones P.D., OSBORN T.J., SHIYATOV S.G., VAGANOV E.A., 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, vol. 391, no. 6668, pp. 678-682.
http://dx.doi.org/10.1038/35596 -
7. Briffa K.R., Osborn T.J., Schweingruber F.H., Jones P.D., Shiyatov S.G., Vaganov E.A., 2002. Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. The Holocene, vol. 12, no. 6, pp. 737-757.
http://dx.doi.org/10.1191/0959683602hl588rp -
http://dx.doi.org/10.1191/0959683602hl587rp -
8. Büntgen U., Frank D.C., Kaczka R.J., Verstege A., Zwijacz-Kozica T., Esper J., 2007. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiology, vol. 27, no. 5, pp. 689-702.
http://dx.doi.org/10.1093/treephys/27.5.689 -
9. Büntgen U., Frank D.C., Wilson R., Career M., Urbinati C., Esper J., 2008. Testing for tree-ring divergence in the European Alps. Global Change Biology, vol. 14, no. 10, pp. 2433-2453.
http://dx.doi.org/10.1111/j.1365-2486.2008.01640.x -
10. Büntgen U., Tegel W., Heussner K.U., HOFMANN J., KONTIC R., KYNCL T., COOK E.R., 2012. Effects of sample size in dendroclimatology. Climate Research, 53, pp. 263-269.
11. Carrer M., Urbinati C., 2001. Assessing climate- -growth relationships: A comparative study between linear and non-linear methods. Dendrochronologia, 19, pp. 57-65.
12. Carrer M., Urbinati C., 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, vol. 85, no. 3, pp. 730-740.
http://dx.doi.org/10.1890/02-0478 -
13. COOK E.R., PETERS K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, 41, pp. 45-53
14. COOK E.R., HOLMES R.L., 1986. User's manual for computer program ARSTAN [in:] R.L. Holmes, R.K. Adams, H.C. Fritts (eds.), Tree ring chronologies of western North America: California, eastern Oregon and northern Great Basin, Chronology Ser. 6., Tucson: Univeristy of Arizona, pp. 50-56.
15. Czajka B., 2012. Wpływ wysokości n.p.m. na wrażliwość klimatyczną świerka pospolitego w masywie Babiej Góry. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, vol. 1, no. 30, pp. 91-97
16. CZAJKA B., KACZKA R.J. 2014. Dendrochronologiczna charakterystyka górnej granicy lasu na Babiej Górze w strefie jej progresu. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, vol.16, no. 40, pp. 42-52.
17. CZAJKA B., ŁAJCZAK A., KACZKA R.J., 2015. The dynamics of the timberline ecotone on the asymmetric ridge of the Babia Góra Massif, Western Carpathians. Geographia Polonica, vol. 88, no. 2, pp. 85-102.
18. D'Arrigo R., Wilson R., Liepert B., Cherubini P., 2008. On the 'divergence problem' in northern forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change, vol. 60, no. 3, pp. 289-305.
http://dx.doi.org/10.1016/j.gloplacha.2007.03.004 -
19. Daubenmire R., 1954. Alpine timberlines in the Americas and their interpretation. Butler University Botanical Studies, 2, pp. 119-136.
20. ESPER J., COOK E.R., KRUSIC P.J., PETERS K., SCHWEINGRUBER F.H., 2003. Tests of the RCS method for preserving low-frequency variability in long treering chronologies. Tree-ring research. vol. 59, no. 2, pp. 81-98.
21. Esper J., Niederer R., Bebi P., Frank D., 2008. Climate signal age effects – evidence from young and old trees in the Swiss Engadin. Forest Ecology and Management, vol. 25, no. 11, pp. 3783-3789.
http://dx.doi.org/10.1016/j.foreco.2008.03.015 -
22. Esper, J., Frank, D.C., 2009. Divergence pitfalls in tree-ring research. Climatic Change, vol. 94, no. 3, pp. 261-266.
http://dx.doi.org/10.1007/s10584-009-9594-2 -
23. Esper J., Frank D., Büntgen U., Verstege A., Hantemirov R.M., Kirdyanov A.V., 2010. Trends and uncertainties in Siberian indicators of 20th century warming. Global Change Biology, vol. 16, no. 1, pp. 386-398.
http://dx.doi.org/10.1111/j.1365-2486.2009.01913.x -
24. Frank D., Esper J., 2005. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network for the European Alps. Dendrochronologia, 22, pp. 107-121.
http://dx.doi.org/10.1016/j.dendro.2005.02.004 -
25. FRIES T.C.E., 1913. Botanische Untersuchungen im nördlichsten Schweden: Ein Beitrag zur Kenntnis der alpinen und subalpinen Vegetation in Torne Lappmark. Vetenskapliga och praktiska undersökningar i Lappland, Flora ich Fauna, vol. 2, 361 pp.
26. Fritts, H.C. 1976. Tree rings and climate. London: Academic Press.
27. Grace J., 1977. Plant response to wind. London: Academic Press.
28. Grissino-Mayer H.D., 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research, vol. 57, no. 2, pp. 205-221.
29. GUZIK M., 2008. Analiza wpływu czynników naturalnych i antropogenicznych na kształtowanie się zasięgu lasu i kosodrzewiny w Tatrach. Kraków: Uniwersytet Rolniczy im. Hugona Kołłątaja. Wydział Leśny. Katedra Botaniki Leśnej i Ochrony Przyrody [PhD thesis].
30. Haylock M.R., Hofstra N., Klein Tank A.M.G., Klok E.J., Jones P.D., New M., 2008. A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysical Research: Atmospheres, vol. 113, D20119.
31. Hess M., 1965. Piętra klimatyczne w polskich Karpatach Zachodnich. Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Prace Instytutu Geograficznego 33, Kraków: Uniwersytet Jagielloński.
32. Hoch G., Popp M., Körner Ch., 2002. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos, vol. 98, no. 3, pp. 361-374.
http://dx.doi.org/10.1034/j.1600-0706.2002.980301.x -
33. Holtmeier F.K., 1973. Geoecological aspects of timberline in northern and central Europe. Arctic and Alpine Researches, vol. 5, no. 3, pp. 45-54.
34. Holtmeier F.K., 1974. Geooekologische Beobachtungen und Studienan der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Wiesbaden: Franz Steiner.
35. Imhof E., 1900. Die Waldgrenze in der Schweiz, Gerlands Beitr. Geophysik, 4, pp. 241-330.
36. Kaczka R.J., Büntgen U., 2006. Spatial autocorrelation and growth/climate response of a high elevation spruce network along the Carpathian arc. TRACE, 6, pp. 103-112.
37. Kaczka R.J., Czajka B., 2014. Intensywność odbicia światła niebieskiego jako nowy nośnik informacji w badaniach dendrochronologicznych. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie, vol. 16, no. 40, pp. 274-282.41. Kotarba A., Starkel L., 1972. Holocen morphogenetic altitudinal zones in the Carpathians. Studia Geomorphologica Carpatho-Balcanica, 6, pp. 21-35.
38. Körner C., 2003. Alpine plant life: Functional plant ecology of high mountain ecosystems. Berlin: Springer-Verlag.
http://dx.doi.org/10.1007/978-3-642-18970-8 -
39. Körner C., Paulsen J., 2004. A worldwide study of high altitude treeline temperatures. Journal of Biogeography, vol. 31, no. 5, pp. 713-732.
http://dx.doi.org/10.1111/j.1365-2699.2003.01043.x -
40. Körner C., 2012. Treelines will be understood, once the difference between a tree and a shrub is. Ambio, vol. 41, no. 3, pp. 197-206.
http://dx.doi.org/10.1007/s13280-012-0313-2 -
41. Kotarba A., Starkel L., 1972. Holocen morphogenetic altitudinal zones in the Carpathians. Studia Geomorphologica Carpatho-Balcanica, 6, pp. 21-35.
42. Łajczak A., Lamorski T., 2015. Economic use of the Babia Góra Massif and the assessment of anthropogenic changes in the course of the timberline. Geographia Polonica, vol. 88, no. 2, pp. 115-138.
43. Larsson L.A., 2003a. CooRecorder: Image co-ordinate recording program. Manual, http://www.cybis.se/cbeewing/CRecorder/handbok.htm [10 February 2015].
44. Larsson L.A., 2003b. CDendro: Cybis Dendro dating program. Manual, http://www.cybis.se/forfun/dendro/ [10 February 2015].
45. Leszczycki S., 1938. Region Podhala. Podstawy geograficzno-gospodarcze planu regionalnego. Prace Instytutu Geografii Uniwersytetu Jagiellońskiego, 20, Kraków: Nakładem Uniwersytetu Jagiellońskiego.
46. Makinen H., Nojd P., Kahle H.P., Neumann U., Tveite B., Mielikainen K., Rohle H., Spiecker H., 2002. Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, vol. 171, no. 3, pp. 243-259.
http://dx.doi.org/10.1016/S0378-1127(01)00786-1 -
47. Marek R., 1910. Waldgrenzstudien in den österreichischen Alpen. Petermann's Mittheilungen aus Justus Perthes' Geographischer Anstalt. Ergä nzungsband, 168. Gotha: J. Perthes.
48. Melvin T.M., Briffa K.R., 2008. A "signal-free" approach to dendroclimatic standardisation. Dendrochronologia, vol. 26, no. 2, pp. 71-86.
http://dx.doi.org/10.1016/j.dendro.2007.12.001 -
49. Mikola P., 1962. Temperature and tree growth near the northern timberline [in:] T.T. Kozlowski (ed.), Tree Growth, New York: Rondal Press, pp. 265-274.
50. MILATA W., 1936. Zima w Beskidach Śląskich. Zaranie Śląskie, vol. 12, no. 1, Katowice-Cieszyn: Instytut Śląski, Towarzystwo Ludoznawcze w Cieszynie, pp. 37-43.
51. MILATA W., 1937. Lato w Beskidach Śląskich. Zaranie Śląskie, vol. 13, no. 3, Katowice-Cieszyn: Instytut Śląski, Towarzystwo Ludoznawcze w Cieszynie, pp. 179-187.
52. Obrębska-Starklowa B., 1963. Klimat Babiej Góry [in:] W. Szafer (ed.), Babiogórski Park Narodowy, Kraków: Zakład Ochrony Przyrody PAN, Państwowe Wydawnictwo Naukowe, pp. 45-67.
52. OBRĘBSKA-STARKEL B., 2004. Klimat masywu Babiej Góry [in:] B.W. Wołoszyn, A. Jaworski, J. Szwagrzyk (eds.), Babiogórski Park Narodowy: Monografia Przyrodnicza, Kraków: Wydawnictwoi Drukarnia Towarzystwa Słowaków w Polsce, pp. 137-151.
53. Ohsawa T., Die Y., 2008. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecology and Biogeography, vol. 17, no. 2, pp.152-163.
http://dx.doi.org/10.1111/j.1466-8238.2007.00357.x -
54. Paulsen J., Körner C., 2014. A climate-based model to predict potential treeline position around the globe. Alpine Botany, vol. 124, no. 1, pp. 1-12.
http://dx.doi.org/10.1007/s00035-014-0124-0 -
55. Richardson A.D., Friedland A.J., 2009. A Review of the theories to explain Arctic and Alpine Treelines around the world. Journal of Sustainable Forestry, vol. 28, no. 1-2, pp. 218-242.
http://dx.doi.org/10.1080/10549810802626456 -
56. Rolland C., Desplanque C., Michalet R., Schweingruber F.H., 2000. Extreme tree rings in spruce (Picea abies (L.) Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and space in the Southern French and Italian Alps. Arctic Antarctic and Alpine Research, vol. 32, part 1, pp. 1-13.
http://dx.doi.org/10.2307/1552404 -
57. Rossi S., Deslauriers A., Anfodillo T., Morin H., Saracino A., Mottaand R., Borghetti M., 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, vol. 170, no. 2, pp. 301-310.
http://dx.doi.org/10.1111/j.1469-8137.2006.01660.x -
58. Rossi S., Deslauriers A., Anfodillo T., Carraro V., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, vol. 152, no. 1, pp. 1-12.
http://dx.doi.org/10.1007/s00442-006-0625-7 -
59. Rossi S., Deslauriers A., Griçar J., Seo J-W., Rathgeber C., Anfodillo T., Morin H., Levanic T., Ovenn P., Jalkanen R., 2008., Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, vol. 17, no. 6, pp. 696-707.
http://dx.doi.org/10.1111/j.1466-8238.2008.00417.x -
60. Savva Y., Oleksyn J., Reich P.B., Tjoelker M.G., Vaganov E.A., Modrzyński J., 2006. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees, vol. 20, no. 6, pp. 735-746.
http://dx.doi.org/10.1007/s00468-006-0088-9 -
61. Schneider L., Esper J., Timonen M., Büntgen U., 2014. Detection and evaluation of an early divergence problem in northern Fennoscandian treering data. Oikos, vol. 123, no. 5, pp. 559-566.
http://dx.doi.org/10.1111/j.1600-0706.2013.00836.x -
62. Schweingruber F.H. 1996. Tree rings and environment: Dendrochronology. Bern: Paul Haupt.
63. Sitko I., Troll M., 2008. Timberline changes in relation to summer farming in the Western Chornohora (Ukrainian Carpathians). Mountain Research and Development, vol. 28, no. 3-4., pp. 263-271.
http://dx.doi.org/10.1659/mrd.0963 -
64. Sokołowski M., 1928. O górnej granicy lasu w Tatrach. Kraków: Zakłady Kórnickie.
65. Stevens G.C., FOX. J.F., 1991. The causes of treeline. Annual Review of Ecology and Systematics, 22, pp. 177-191.
http://dx.doi.org/10.1146/annurev.es.22.110191.001141 -
66. Szychowska-Krąpiec E., 1998. Spruce chronology from Mt Pilsko area. (Żywiec Beskid Range) 1641-1995 AD. Bulletin of the Polish Academy of Sciences. Earth Sciences, vol. 46, no. 2, pp. 75-86.
67. Troll C., 1973. High mountain belts between the polar caps and the equator: Their definition and lower limit. Arctic and Alpine Research, vol. 5, no. 3, pp. A19-A27.
68. Vaganov E.A., Hughes M.K., Kirdyanov A.V., Schweingruber F.H., Silkin P.P., 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, vol. 400, no. 6740, pp. 149-151.
http://dx.doi.org/10.1038/22087 -
69. Walter H., Medina E., 1969. Die Bodentemperatur als ausschlaggebender Faktor für die Gliederung der subalpinen und alpinen Stufe in den Anden Venezuelas. (Vorläufige Mitteilung). Berichte der Deutschen Botanischen Gesellschaft, vol. 82, no. 3-4, pp. 275-281.
70. Wigley T.M., Briffa K.R., Jones P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, vol. 23, no. 2, pp. 201-213.
http://dx.doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 -
71. Wilson R.J.S., Topham J., 2004. Violins and climate. Theoretical and Applied Climatology, vol. 77, no. 1-2, pp. 9-24.
http://dx.doi.org/10.1007/s00704-003-0025-4 -
72. Wilson R.J.S., Elling W., 2004. Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region: Implications for dendroclimatic reconstruction. Trees, vol. 18, no. 1, pp. 19-28.
http://dx.doi.org/10.1007/s00468-003-0273-z -
73. Zientarski J., 1985. Wpływ wzniesienia oraz wielkości masywu górskiego na kształtowanie się górnej granicy lasu w Polsce. Poznań: Akademia Rolnicza [PhD thesis].
File size 3,5 MB ; application/pdf
Resource Identifier: Source:CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Rights:Creative Commons Attribution BY-ND 3.0 PL license
Terms of use:Copyright-protected material. [CC BY-ND 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-ND 3.0 PL license, full text available at: ; -
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure
Access: