Object structure
Title:

Late Pleistocene glaciation in the headwaters of the Ceremuşul Alb valley (Maramureş Mountains, Romania)

Subtitle:

Geographia Polonica Vol. 96 No. 1 (2023)

Creator:

Kłapyta, Piotr : Autor Affiliation ORCID ; Mîndrescu, Marcel : Autor Affiliation ORCID ; Zasadni, Jerzy : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2023

Description:

24 cm

Subject and Keywords:

glacier reconstruction ; ELA ; glacial sediments ; Maramureş Mountains ; Romania

Abstract:

The Late Pleistocene Jupania palaeoglacier (area 0.85 km2 , 1.7 km long) was reconstructed in the headwaters of the Ceremuşul Alb/Bilyj Cheremosh valley (Maramureş Mountains). The study area represents one of the most inaccessible natural areas in the Romanian part of the Eastern Carpathians where the legacy of the Pleistocene glaciation has recently been discovered. Based on mapping of glacial landforms and deposits, we reconstruct glacier dimension and ice-surface geometry, as well as estimate equilibrium line altitude (ELA) during the maximal ice extent (MIE). Well-preserved terminal moraines mark the extent of glacier front at ~1400 m a.s.l. Sedimentological analysis documents that the lateral moraines are sometimes overbuilt by 1-1.5 m thick colluvial deposits. The ELA for the Jupania palaeoglacier calculated with the Area-AltitudeBalance-Ratio (AABR) 1.6 was 1630 m. However, the gentle-sloping mountain-top could serve as an important snow contribution area to glacier mass balance; therefore, the ELA could potentially exist even higher at 1676 m. The resulting climatic ELA (1630-1676 m) in the south-eastern part of the Maramureş Mountains fits well with the rising trend of ELA towards the southeast observed between Chornohora (ELA = 1516 m) and Rodna Mountains (ELA = 1697 m). The SE rising trend of the ELA corresponds well with the dominant palaeowind direction suggested in the Carpathian region and supports the prevalence of zonal circulation pattern in Central Eastern Europe during the culumination of the last glaciation.

References:

Barr, I. D., & Lovell, H. (2014). A review of topographic controls on moraine distribution. Geomorphology, 226, 44-64. https://doi.org/10.1016/j.geomorph.2014.07.030 DOI
Barr, I. D., & Spagnolo, M. (2015). Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. Earth-Science Reviews, 151, 48-78. https://doi.org/10.1016/j.earscirev.2015.10.004 DOI
Benn, D. I., & Ballantyne, C. K. (1993). The description and representation of particle shape. Earth Surface Processes and Landforms, 18(7), 665-672. https://doi.org/10.1002/esp.3290180709 DOI
Benn, D. I., & Ballantyne, C. K. (1994). Reconstructing the transport history of glacigenic sediments: A new approach based on the co-variance of clast form indices. Sedimentary Geology, 91, 215-227. https://doi.org/10.1016/0037-0738(94)90130-9 DOI
Benn, D. I., & Ballantyne, C. K. (2005). Palaeoclimatic reconstruction from Loch Lomond Readvance glaciers in the West Drumochter Hills, Scotland. Journal of Quaternary Science, 20(6), 577-592. https://doi.org/10.1002/jqs.925 DOI
Benn, D. I., & Hulton, N. R. J. (2010). An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36(5), 605-610. https://doi.org/10.1016/j.cageo.2009.09.016 DOI
Braithwaite, R. J. (2015). From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA). From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA. The Cryosphere, 9(6), 2135-2148. https://doi.org/10.5194/tc-9-2135-2015 DOI
Brook, M. S., & Lukas, S. (2012). A revised approach to discriminating sediment transport histories in glacigenic sediments in a temperate alpine environment: A case study from Fox Glacier, New Zealand. Earth Surface Processes and Landforms, 37(8), 895-900. https://doi.org/10.1002/esp.3250 DOI
Coleman, C. G., Carr, S. J., & Parker, A. G. (2009). Modelling topoclimatic controls on palaeoglaciers: Implications for inferring palaeoclimate from geomorphic evidence. Quaternary Science Reviews, 28(3-4), 249-259. https://doi.org/10.1016/j.quascirev.2008.10.016 DOI
Cuffey, K., & Paterson, W. S. B. (2010). The physics of glaciers. Burlington: Elsevier.
Engel, Z., Mentlík, P., Braucher, R., Minár, J., & Léanni, L. (2015). Geomorphological evidence and 10Be exposure ages for the Last Glacial Maximum and deglaciation of the Velk'a and Mal'a Studen'a dolina valleys in the High Tatra Mountains, central Europe. Quaternary Science Reviews, 124, 106-123. https://doi.org/10.1016/j.quascirev.2015.07.015 DOI
Evans, I. S. (1977). World-wide variations in the direction and concentration of cirque and glacier aspects. Geografiska Annaler, Series A, Physical Geography, 59(3-4), 151-175. https://doi.org/10.1080/04353676.1977.11879949 DOI
Evans, I. S. (2021). Glaciers, rock avalanches and the 'buzzsaw' in cirque development: Why mountain cirques are of mainly glacial origin. Earth Surface Processes and Landforms, 46(1), 24-46. https://doi.org/10.1002/esp.4810 DOI
Evans, I. S., & Cox, N. J. (1974). Geomorphometry and the operational definition of cirques. Area, 6(2), 150-153.
Evans, I. S., & Cox, N. J. (2005). Global variations of local asymmetry in glacier altitude: Separation of north-south and east-west components. Journal of Glaciology, 51(174), 469-482. https://doi.org/10.3189/172756505781829205 DOI
Evans, I. S., Çılğın, Z., Bayrakdar, C., & Canpolat, E. (2021). The form, distribution and palaeoclimatic implications of cirques in southwest Turkey (Western Taurus). Geomorphology, 391(15). https://doi.org/10.1016/j.geomorph.2021.107885 DOI
Glasser, N. F., Harrison, S., & Jansson, K. N. (2009). Topographic controls on glacier sediment- landform associations around the temperate North Patagonian Icefield. Quaternary Science Reviews, 28(25), 2817-2832. https://doi.org/10.1016/j.geomorph.2019.03.00 DOI
Graham, D. J., & Midgley, N. G. (2000). Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surface Processes and Landforms, 25(13), 1473-1477. https://doi.org/10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C DOI
Hnatiuk, R. (1987). Formy reliefa i otłozenija drjevnjego oledjenjenija Ukrainskich Karpat. (Unpublished thesis), Lviv.
Institutul Geologic Bucuresti. (1968). Harta geologica scara 1:200,000, foaia Viseu.
Kern, Z., & László, P. (2010). Size specific steady-state accumulation-area ratio: An improvement for equilibrium-line estimation of small palaeoglaciers. Quaternary Science Reviews, 29(19-20), 2781-2787. https://doi.org/10.1016/j.quascirev.2010.06.033 DOI
Kłapyta, P., & Zasadni, J. (2018). Research history on the Tatra Mountains glaciations. Studia Geomorphologica Carpatho-Balcanica, 51, 43-85.
Kłapyta, P., Mîndrescu, M., & Zasadni, J. (2021). Geomorphological record and equilibrium line altitude of glaciers during the last glacial maximum in the Rodna Mountains (eastern Carpathians). Quaternary Research, 100, 1-20. https://doi.org/10.1017/qua.2020.90
Kłapyta, P, Zasadni, J., Dubis, L., & Świąder, A. (2021). Glaciation in the highest parts of the Ukrainian Carpathians (Chornohora and Svydovets massifs) during the local last glacial maximum. Catena, 203. https://doi.org/10.1016/j.catena.2021.105346
Kłapyta, P., Bryndza, M., Zasadni, J., & Jasionek, M. (2022). The lowest elevation Pleistocene glaciers in the Carpathians - The geomorphological and sedimentological record of glaciation in the Polonyna Rivna and Borzhava massifs (Ukraine Carpathians). Geomorphology, 398. https://doi.org/10.1016/j.geomorph.2021.108060
Kłapyta, P., Mîndrescu, M., & Zasadni, J. (2022). The impact of local topoclimatic factors on marginal Pleistocene glaciation in the Northern Romanian Carpathians. Catena, 210, https://doi.org/10.1016/j.catena.2021.105873 DOI
Kłapyta P., Zasadni J., & Mîndrescu M. (2023). Late Pleistocene glaciation in the Eastern Carpathians - A regional overwiew. Catena 224. https://doi.org/10.1016/j.catena.2023.106994 DOI
Knorn, J., Kuemmerle, T., Radeloff, V. C., Szabo, A., Mîndrescu, M., Keeton, W. S., Abrudan, I., Griffiths, P., Gancz, V., & Hostert, P. (2012). Forest restitution and protected area effectiveness in post-socialist Romania. Biological Conservation, 146(1), 204-212. https://doi.org/10.1016/j.biocon.2011.12.020 DOI
Kondracki, J. (1935). O zlodowaceniu pasma Nieneski w Karpatach Marmaroskich. Przegląd Geograficzny, 14(3-4), 160-166.
Kondracki, J. (1937). Karpaty Marmaroskie. Wierchy, 15, Kraków: Nakładem Polskiego Towarzystwa Tatrzańskiego.
Kravchuk, J. (2021). Relief Ukrainskikh Karpat. Vyd. Tsentr. LNU im. I.Franka, Lviv, p. 575 (in Ukrainian).
Kräutner, H. G., Kräutner, F., & Szasz, L. (1983). Harta Geologică România 1:50,000, Ineu 20b, Bucuresti.
Lehmann, P. W. (1881). Beobachtungen über Tektonik und Gletscherspurenim Fogaraschen Gebirge. Zeitschrift der Deutschen Geologischen Gesellschaft, 33(1), 109-117.
Lehmann, P. W. (1891). Der ehemalige Gletscher des Lalatales im Rodnaergebirge. Petermanns Mitteilungen, 37, 98-99.
Lopes, L., Oliva, M., Fernandes, M., Pereira, P., Palma, P., & Ruiz-Fernández, J. (2018). Spatial distribution of morphometric parameters of glacial cirques in the Central Pyrenees (Aran and Boí valleys). Journal of Mountain Science, 15(10). https://doi.org/10.1007/s11629-018-4873-x DOI
Lukas, S., Benn, D. I., Boston, C. M., Brook, M., Coray, S., Evans, D. J. A., Graf, A., Kellerer- Pirklbauer, A., Kirkbride, M. P., Krabbendam, M., Lovell, H., Machiedo, M., Mills, S. C., Nye, K., Reinardy, B. T. I., Ross, F. H., & Signer, M. (2013). Clast shape analysis and clast transport paths in glacial environments: A critical review of methods and the role of lithology. Earth-Science Reviews, 121, 96-116. https://doi.org/10.1016/j.earscirev.2013.02.005 DOI
Mac, I., Covaci, I., & Moldovan, C. (1990). Glaciaţiune şi morfologie glaciară în munţii mijlocii din România. Studia Universitatis "Babeş-Bolyai", Geographia, 35(2), 3-12.
Makos, M., Rinterknecht, V., Braucher, R., Tołoczko-Pasek, A., Arnold, M., Aumaître, G., Bourlés, D., & Keddadouche, K. (2018). Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains - Revised deglaciation chronology based on the 10Be exposure age dating. Quaternary Science Reviews, 187, 130-156. https://doi.org/10.1016/j.quascirev.2018.03.006 DOI
Mitchell, W. A. (1996). Significance of snowblow in the generation of Loch Lomond Stadial (Younger Dryas) glaciers in the western Pennines, northern England. Journal of Quaternary Science, 11(3), 233-248. https://doi.org/10.1002/(SICI)1099-1417(199605/06)11:3<233::AID-JQS240>3.0.CO;2-Q DOI
Mîndrescu, M. (1997). Perenitatea formelor de relief glaciare din Munţii Maramureşului. Analele Universităţii "Ştefan cel Mare" Suceava, secţiunea Geografie - Geologie, 6, 45-48.
Mîndrescu, M. (2001-2002). Muntele Jupania (Munţi Maramureşului de Sud). Un nou areal glaciat din Carpaţi Orientali. Analele Universităţii "Ştefan cel Mare" Suceava, secţiunea Geografie - Geologie, 11, 41-47.
Mîndrescu, M. (2003). Analiza şi clasificarea geomorfometrică a Munţilor Maramureşului. Analele Universităţii de Vest din Timişoara, Seria Geografie, 13, 17-26.
Mîndrescu, M. (2016). Geomorfmetria circurilor glaciare din Carpaţii Româneşti. Editura Universităţii Ştefan cel Mare, Suceava.
Mîndrescu, M., & Evans, I. S. (2014). Cirque form and development in Romania: Allometry and the buzzsaw hypothesis. Geomorphology, 208, 117-136. https://doi.org/10.1016/j.geomorph.2013.11.019 DOI
Mîndrescu, M., Evans, I. S., & Cox, N. J. (2010). Climatic implications of cirque distribution in the Romanian Carpathians: Palaeowind directions during glacial periods. Journal of Quaternary Science, 25(6), 875-888. https://doi.org/10.1002/jqs.1363 DOI
Oien, R. P., Rea, B. R., Spagnolo, M., Barr, I. D., & Bingham, R. G. (2021). Testing the area-altitude balance ratio (AABR) and accumulation-area ratio (AAR) methods of calculating glacier equilibrium-line altitudes. Journal of Glaciology, 68(268), 357-368. https://doi.org/10.1017/jog.2021.100 DOI
Osmaston, H. (2005). Estimates of glacier equilibrium line altitudes by the Area × Altitude, the Area × Altitude Balance Ratio and the Area × Altitude Balance Index methods and their validation. Quaternary International, 138-139, 22-31. https://doi.org/10.1016/j.quaint.2005.02.004 DOI
Paul, C. M., & Tietze, E. (1876). Bericht über die bisher in diesem Sommer ausgefarten Untersuchungen in den Karpathen. Verh. der kk Geologische Reichsanstalt, Wien 12, 294-297.
Pawłowski, S. (1936). Les Karpates a l'epoque glaciaire. Congres Internationale de Geographie (Varsovie 1934). Comptes Rendus, Travaux de section 2, 89-141.
Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., & Ribolini, A. (2015). A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences, 82, 55-62. https://doi.org/10.1016/j.cageo.2015.05.005 DOI
Powers, M. C. (1953). A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), 117-119. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D DOI
Rea, B. R. (2009). Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in glacierclimate reconstructions. Quaternary Science Reviews, 28(3-4), 237-248. https://doi.org/10.1016/j.quascirev.2008.10.011 DOI
Ruszkiczay-Rüdiger, Z., Kern, Z., Urdea, P., Braucher, R., Balazs, M., Schimmelpfennig, I., & Team, A. (2016). Revised deglaciation history of the Pietrele-Stanisoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quaternary International, 415, 216-229. https://doi.org/10.1016/j.quaint.2015.10.085 DOI
Ruszkiczay-Rüdiger, Z., Kern, Z., Urdea, P., Madarász, B., Braucher, R., & ASTER Team. (2021). Limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Southern Carpathians, Romania). Geomorphology, 384. https://doi.org/10.1016/j.geomorph.2021.107719 DOI
Sawicki, L. (1911). Die glazialen Züge der Rodner Alpen und Marmaroscher Karpathen. Mitteilungen der Kaiserlich-Königlichen Geographische Gesellschaft zu Wien, Bd. 54, Ht. 10 and 11, 510-571.
Sawicki, L. (1912). Les'etudes glaciaire dans les Karpates. Aperçu historique et critique. In Annales de Géographie (Vol. 21, No. 117, pp. 230-250). Armand Colin. DOI
Săndulescu, M. (1984). Geotectonica României. Bucureşti: Editura Tehnică.
Schmid, S. M., Fügenschuh, B., Kounov, A., Maţenco, L., Nievergelt, P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K., & van Hinsbergen, D. J. J. (2020). Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78, 308-374. https://doi.org/10.1016/j.gr.2019.07.005 DOI
Sissons, J. B. (1980). The Loch Lomond Advance in the Lake District, northern England. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 71(1), 13-27. https://doi.org/10.1017/S0263593300013468 DOI
Sissons, J. B., & Sutherland, D. G. (1976). Climatic inferences from glaciers in the Southeast Grampian Highlands, Scotland. Journal of Glaciology, 17(76), 325-346. https://doi.org/10.3189/S0022143000013617 DOI
Sîrcu, I. (1963). Le probleme de la glaciation quaternaire dans les montagnes du Maramureş. Analeles ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Ştiine naturale, Geologie -Geografie, 9, 125-134.
Sneed, E. D., & Folk, R. L. (1958). Pebbles in the lower Colorado River, Texas, a study in particle morphogenesis. Journal of Geology, 66(2), 114-150. https://doi.org/10.1086/626490 DOI
Świderski, B. (1938). Geomorfologia Czarnohory. Warszawa: Wydawnictwo Kasy im, Mianowskiego.
Tietze, K. (1878). Über das Vorkommnis der Eiszeitspuren in den Ostkarpathen. Verhandlungen der geologische Reichsanstalt. 142-146.
Urdea, P., Onaca, A., Ardelean, F., & Ardelean, M. (2011). New evidence on the Quaternary glaciation in the Romanian Carpathians. In Ehlers, J., Gibbard, P. L., Hughes, P. D. (Eds.), Quaternary glaciations - extent and chronology: A closer look (pp. 305-322). Series Developments in Quaternary Science, Vol. 15. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53447-7.00024-6 DOI
Zasadni, J., & Kłapyta, P. (2014). The Tatra Mountains during the last glacial maximum. Journal of Maps, 10(3), 440-456. https://doi.org/10.1080/17445647.2014.885854 DOI
Zasadni, J., Kłapyta, P., Broś, E., Ivy-Ochs, S., Świąder, A., Christl, M., & Balážovičová, L. (2020). Latest Pleistocene glacier advances and post-Younger Dryas rock glacier stabilization in the Mt. Kriváň group, High Tatra Mountains, Slovakia. Geomorphology, 358. https://doi.org/10.1016/j.geomorph.2020.107093 DOI
Zasadni, J., Kałuża, P., Kłapyta, P., & Świąder, A. (2021). Evolution of the Białka valley Pleistocene moraine complex in the High Tatra Mountains. Catena, 207. https://doi.org/10.1016/j.catena.2021.105704 DOI
Zejszner, L. (1856). Über eine Längenmoräne im Thale des Biały Dunajec be idem Hochofen von Zakopane in der Tatra. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Matematisch-Naturwissenschaftliche Klasse, l, 21, 259-262.

Relation:

Geographia Polonica

Volume:

96

Issue:

1

Start page:

13

End page:

28

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

doi:10.7163/GPol.0243 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0243

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: