Metadata language
Przegląd Geograficzny T. 94 z. 1 (2022)
Creator: Publisher: Place of publishing: Date issued/created: Description: Subject and Keywords:wind energy ; meteorological model ; computational grid resolution ; wind-grid profile
Abstract:The article presents a comparison of the results of calculations of wind energy resources based on measurements at meteorological stations and on the basis of the results of the COSMO meteorological model in three basic resolutions in the period of 2011-2019. The aim of the study was to compare the results of calculations of wind energy resources obtained on the basis of measurements at meteorological stations and on the basis of analyzes resulting from the work of meteorological numerical models, operating at various spatial scales. It was found that the use of archived results of analyzes of meteorological models, especially those in high resolution, allows for such an assessment in a climatological sense in the same way as the results of measurements at meteorological stations used for this purpose. For investment purposes, calculations of wind energy resources at higher altitudes were also carried out, so that the results could also be applied to high wind turbines – those of higher power.
References:
Archer, C.L. & Jacobson, M.Z. (2003). Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. Journal of Geophysical Research, 108(D9, 4289), ACL 10‑1-ACL 10‑20. https://doi.org/10.1029/2002JD002076
Archer, C.L. & Jacobson, M.Z. (2005). Evaluation of global wind power. Journal of Geophysical Research, 110(D12110), 1‑20. https://doi.org/10.1029/2004JD005462
Duniec, G., Interewicz, W., Mazur, A., & Wyszogrodzki, A. (2017). Operational setup of the soil-perturbed, time-lagged Ensemble Prediction System at the Institute of Meteorology and Water Management - National Research Institute. Meteorology Hydrology and Water Management, 5(2), 43‑51. https://doi.org/10.26491/mhwm/71048
Hahmann, A.N., Sile, T., Witha, B., Davis, N.N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González Rouco, J.F., Navarro, J., Olsen, B.T., & Söderberg, S. (2020). The Making of the New European Wind Atlas, Part 1: Model Sensitivity. Geoscientific Model Development Discussion. https://doi.org/10.5194/gmd-2019-349
Hall, M.J. (2003). The interpretation of non-homogeneous hydrometeorological time series a case study. Meteorological Applications, 10, 61‑67. https://doi.org/10.1017/S1350482703005061
Jąderko, A., & Gała, M. (2016). Odtwarzanie zmiennych stanu w układzie sterowania turbiną wiatrową z generatorem indukcyjnym. Przegląd Elektrotechniczny, 92(12), 53‑56. https://doi.org/10.15199/48.2016.12.14
Lorenc, H. (1996). Struktura i zasoby energetyczne wiatru w Polsce. Warszawa: Materiały Badawcze IMGW.
Michalak, P. (2009). Ocena zasobów energii wiatru na potrzeby małej energetyki wiatrowej. Elektrotechnika i elektronika, 28(1‑2), 14‑19.
Omer, A.M. (2008). On the wind energy resources of Sudan. Renewable and Sustainable Energy Reviews, 12(8), 2117‑2139. https://doi.org/10.1016/j.rser.2006.10.010
Papoulis, A., & Pillai, S.U. (2002). Probability, random variables, and stochastic processes. Boston: McGraw-Hill.
Papritz, A., & Stein, A. (2002). Spatial Prediction by Linear Kriging. W: A. Stein, F. van der Meer, B. Gorte (red.), Spatial Statistics for Remote Sensing (s. 83‑113). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47647-9_6
Troen, I., & Petersen, E.L. (1989). European Wind Atlas. Roskilde: Risoe National Laboratory.
doi:10.7163/PrzG.2022.1.4 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2022.1.4
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Language: Language of abstract: Rights:Creative Commons Attribution BY 4.0 license
Terms of use:Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Access: